1887

Abstract

Two closely related phytopathogenic bacterial strains, pv. glycinea PG4180 and pv. tomato DC3000, produce the chlorosis-inducing phytotoxin coronatine (COR) in a remarkably divergent manner. PG4180 produces COR at the virulence-promoting temperature of 18 °C, but not at 28 °C. In contrast, temperature has no effect on COR synthesis in DC3000. A modified two-component system consisting of the histidine protein kinase (HPK), CorS, the response regulator (RR), CorR, and a third component, CorP, governs COR biosynthesis in both strains. A plasmid-based component and domain swapping approach was used to introduce different combinations of RRs, HPKs and hybrid HPKs into mutants of both strains. Subsequently, expression levels of the COR biosynthetic operon were determined using RNA dot-blot analysis, suggesting that CorRSP of PG4180 mediates a thermoresponsive phenotype dependent on the genomic background of each strain. The reciprocal experiment demonstrated a loss of temperature dependence in the mutant of PG4180. The presence of from PG4180 led to more pronounced expression in DC3000 and was associated with thermoresponsiveness, while of PG4180 did not mediate a temperature-dependent phenotype in the DC3000 mutant containing native and . These findings were substantiated by RT-PCR experiments. The C-terminal domain of CorS of PG4180 mediated thermosensing, while the N terminus did not respond to temperature changes, suggesting cytosolic perception of the temperature signal.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018820-0
2008-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/9/2700.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018820-0&mimeType=html&fmt=ahah

References

  1. Aguilar P. S., Hernandez-Arriaga A. M., Cybulski L. E., Erazo A. C., de Mendoza D. 2001; Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis . EMBO J 20:1681–1691
    [Google Scholar]
  2. Alarcon-Chaidez F. J., Keith L., Zhao Y., Bender C. L. 2003; RpoN ( σ 54) is required for plasmid-encoded coronatine biosynthesis in Pseudomonas syringae . Plasmid 49:106–117
    [Google Scholar]
  3. Albanesi D., Mansilla M. C., de Mendoza D. 2004; The membrane fluidity sensor DesK of Bacillus subtilis controls the signal decay of its cognate response regulator. J Bacteriol 186:2655–2663
    [Google Scholar]
  4. Bender C. L., Malvick D. K., Mitchell R. E. 1989; Plasmid-mediated production of the phytotoxin coronatine in Pseudomonas syringae pv. tomato. J Bacteriol 171:807–812
    [Google Scholar]
  5. Bender C. L., Liyanage H., Palmer D., Ullrich M., Young S., Mitchell R. 1993; Characterization of the genes controlling the biosynthesis of the polyketide phytotoxin coronatine including conjugation between coronafacic and coronamic acid. Gene 133:31–38
    [Google Scholar]
  6. Bender C. L., Palmer D., Peñaloza-Vázquez A., Rangaswamy V., Ullrich M. 1996; Biosynthesis of coronatine, a thermoregulated phytotoxin produced by the phytopathogen Pseudomonas syringae . Arch Microbiol 166:71–75
    [Google Scholar]
  7. Bradford M. M. 1976; A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  8. Brooks D. M., Hernández-Guzmán G., Kloek A. P., Alarcón-Chaidez F., Sreedharan A., Rangaswamy V., Peñaloza-Vázquez A., Bender C. L., Kunkel B. N. 2004; Identification and characterization of a well-defined series of coronatine biosynthetic mutants of Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 17:162–174
    [Google Scholar]
  9. Budde I. P., Rohde B. H., Bender C. L., Ullrich M. S. 1998; Growth phase and temperature influence promoter activity, transcript abundance, and protein stability during biosynthesis of the Pseudomonas syringae phytotoxin coronatine. J Bacteriol 180:1360–1367
    [Google Scholar]
  10. Buell C. R., Joardar V., Lindeberg M., Selengut J., Paulsen I. T., Gwinn M. L., Dodson R. J., Deboy R. T., Scott Durkin A. other authors 2003; The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 100:10181–10186
    [Google Scholar]
  11. Cintas N. A., Koike S. T., Bull C. T. 2002; A new pathovar, Pseudomonas syringae pv. alisalensis pv. nov., proposed for the causal agent of bacterial blight of broccoli and broccoli raab. Plant Dis 86:992–998
    [Google Scholar]
  12. Couch R., O'Connor S. E., Seidle H., Walsh C. T., Parry R. 2004; Characterization of CmaA, an adenylation-thiolation didomain enzyme involved in the biosynthesis of coronatine. J Bacteriol 186:35–42
    [Google Scholar]
  13. Cuppels D. A. 1986; Generation and characterization of Tn 5 insertion mutations in Pseudomonas syringae pv. tomato. Appl Environ Microbiol 51:323–327
    [Google Scholar]
  14. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A 76:1648–1652
    [Google Scholar]
  15. Fouts D. E., Abramovitch R. B., Alfano J. R., Baldo A. M., Buell C. R., Cartinhour S., Chatterjee A. K., D'Ascenzo M., Gwinn M. L. other authors 2002; Genomewide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc Natl Acad Sci U S A 99:2275–2280
    [Google Scholar]
  16. Grebe T. W., Stock J. B. 1999; The histidine protein kinase superfamily. Adv Microb Physiol 41:139–227
    [Google Scholar]
  17. Hunger K., Beckering C. L., Marahiel M. A. 2004; Genetic evidence for the temperature-sensing ability of the membrane domain of the Bacillus subtilis histidine kinase DesK. FEMS Microbiol Lett 230:41–46
    [Google Scholar]
  18. Inaba M., Suzuki I., Szalontai B., Kanesaki Y., Los D. A., Hayashi H., Murata N. 2003; Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in Synechocystis . J Biol Chem 278:12191–12198
    [Google Scholar]
  19. Keane P. J., Kerr A., New P. B. 1970; Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Aust J Biol Sci 23:585–595
    [Google Scholar]
  20. Keen N. T., Tamaki S., Kobayashi D., Trollinger D. 1988; Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197
    [Google Scholar]
  21. Koike S. T., Barak J. D., Henderson D. M., Gilbertson R. L. 1999; Bacterial blight of leek: a new disease in California caused by Pseudomonas syringae . Plant Dis 83:165–170
    [Google Scholar]
  22. Kustu S., Santero E., Keener J., Popham D., Weiss D. 1989; Expression of sigma 54 ( ntrA )-dependent genes is probably united by a common mechanism. Microbiol Rev 53:367–376
    [Google Scholar]
  23. Liyanage H., Palmer D. A., Ullrich M., Bender C. L. 1995a; Characterization and transcriptional analysis of the gene cluster for coronafacic acid, the polyketide component of the phytotoxin coronatine. Appl Environ Microbiol 61:3843–3848
    [Google Scholar]
  24. Liyanage H., Penfold C., Turner J., Bender C. L. 1995b; Sequence, expression and transcriptional analysis of the coronafacate ligase-encoding gene required for coronatine biosynthesis by Pseudomonas syringae . Gene 153:17–23
    [Google Scholar]
  25. Mitchell R. E. 1982; Coronatine production by some phytopathogenic pseudomonads. Physiol Plant Pathol 20:83–89
    [Google Scholar]
  26. Mitchell R. E., Young S. A., Bender C. L. 1994; Coronamic acid, an intermediate in coronatine biosynthesis by Pseudomonas syringae . Phytochemistry 35:343–348
    [Google Scholar]
  27. Murillo J., Shen H., Gerhold D., Sharma A., Cooksey D. A., Keen N. T. 1994; Characterization of pPT23B, the plasmid involved in syringolide production by Pseudomonas syringae pv. tomato PT23. Plasmid 31:275–287
    [Google Scholar]
  28. Palmer D. A., Bender C. L. 1993; Effects of environmental and nutritional factors on production of the polyketide phytotoxin coronatine by Pseudomonas syringae pv. glycinea. Appl Environ Microbiol 59:1619–1626
    [Google Scholar]
  29. Parry R. J., Mhaskar S. V., Lin M. T., Walker A. E., Mafoti R. 1994; Investigations of the biosynthesis of the phytotoxin coronatine. Can J Chem 72:86–99
    [Google Scholar]
  30. Peñaloza-Vázquez A., Bender C. L. 1998; Characterization of CorR, a transcriptional activator which is required for biosynthesis of the phytotoxin coronatine. J Bacteriol 180:6252–6259
    [Google Scholar]
  31. Rangaswamy V., Bender C. L. 2000; Phosphorylation of CorS and CorR, regulatory proteins that modulate production of the phytotoxin coronatine in Pseudomonas syringae . FEMS Microbiol Lett 193:13–18
    [Google Scholar]
  32. Rangaswamy V., Jiralerspong S., Parry R., Bender C. L. 1998; Biosynthesis of the Pseudomonas polyketide coronafacic acid requires monofunctional and multifunctional polyketide synthase proteins. Proc Natl Acad Sci U S A 95:15469–15474
    [Google Scholar]
  33. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Schenk A., Weingart H., Ullrich M. S. 2008; Extraction of high-quality bacterial RNA from infected leaf tissue for bacterial in planta gene expression analysis by multiplexed fluorescent Northern hybridization. Mol Plant Pathol 9:227–235
    [Google Scholar]
  35. Smirnova A. V., Ullrich M. S. 2004; Topological and deletion analysis of CorS, a Pseudomonas syringae sensor kinase. Microbiology 150:2715–2726
    [Google Scholar]
  36. Smirnova A. V., Braun Y., Ullrich M. S. 2008; Site-directed mutagenesis of the temperature-sensing histidine protein kinase CorS from Pseudomonas syringae . FEMS Microbiol Lett 283:231–238
    [Google Scholar]
  37. Sreedharan A., Peñaloza-Vázquez A., Kunkel B. N., Bender C. L. 2006; CorR regulates multiple components of virulence in Pseudomonas syringae pv. tomato DC3000. Mol Plant Microbe Interact 19:768–779
    [Google Scholar]
  38. Studholme D. J., Buck M. 2000; The biology of enhancer-dependent transcriptional regulation in bacteria: insights from genome sequences. FEMS Microbiol Lett 186:1–9
    [Google Scholar]
  39. Suzuki I., Los A. D., Kanesaki Yu., Mikami K., Murata N. 2000; The pathway for perception and transduction of low-temperature signals in Synechocystis . EMBO J 19:1327–1334
    [Google Scholar]
  40. Ullrich M., Bender C. L. 1994; The biosynthetic gene cluster for coronamic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid-activating enzymes and thioesterases. J Bacteriol 176:7574–7586
    [Google Scholar]
  41. Ullrich M., Peñaloza-Vázquez A., Bailey A. M., Bender C. L. 1995; A modified two-component regulatory system is involved in temperature-dependent biosynthesis of the Pseudomonas syringae phytotoxin coronatine. J Bacteriol 177:6160–6169
    [Google Scholar]
  42. Völksch B., Weingart H. 1998; Toxin production by pathovars of Pseudomonas syringae and their antagonistic activities against epiphytic microorganisms. J Basic Microbiol 38:135–145
    [Google Scholar]
  43. Wang L., Bender C. L., Ullrich M. S. 1999; The transcriptional activator CorR is involved in biosynthesis of the phytotoxin coronatine and binds to the cmaABT promoter region in a temperature-dependent manner. Mol Gen Genet 262:250–260
    [Google Scholar]
  44. Weingart H., Stubner S., Schenk A., Ullrich M. S. 2004; Impact of temperature on in planta expression of genes involved in synthesis of the Pseudomonas syringae phytotoxin coronatine. Mol Plant Microbe Interact 17:1095–1102
    [Google Scholar]
  45. Wösten M. M. S. M. 1998; Eubacterial sigma-factors. FEMS Microbiol Rev 22:127–150
    [Google Scholar]
  46. Zhao Y. F., Damicone J. P., Bender C. L. 2002; Detection, survival, and sources of inoculum for bacterial diseases of leafy crucifers in Oklahoma. Plant Dis 86:883–888
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018820-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018820-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error