1887

Abstract

Ceramides and glycosylceramides, including desaturated long-chain bases, are present in most fungi as well as animals and plants. However, as the budding yeast is not capable of desaturating long-chain bases, little is known about the physiological roles of these compounds in fungi. To investigate the necessity of desaturation of long-chain backbones in ceramides and glucosylceramides in fungal cells, we have identified and characterized a sphingolipid Δ-desaturase (SLD) gene from the pathogenic yeast . Gene disruption of the homologue led to the accumulation of ()-sphing-4-enine, a main substrate for the SLD enzyme. Introducing the gene homologue into these mutant cells resulted in the recovery of synthesis of (, )-sphinga-4,8-dienine and this gene homologue was therefore identified as a - gene. Additionally, the disruptant of had a decreased hyphal growth rate compared with the wild-type strain. These results suggest that Δ-desaturation of long-chain bases in ceramides plays a role in the morphogenesis of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018788-0
2008-12-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3795.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018788-0&mimeType=html&fmt=ahah

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. ( 1992; ). Current Protocols in Molecular Biology. New York: Green and Wiley-Interscience.
  2. Bollinger, C. R., Teichgräber, V. & Gulbins, E. ( 2005; ). Ceramide-enriched membrane domains. Biochim Biophys Acta 1746, 284–294.[CrossRef]
    [Google Scholar]
  3. Chazal, N. & Gerlier, D. ( 2003; ). Virus entry, assembly, budding, and membrane rafts. Microbiol Mol Biol Rev 67, 226–237.[CrossRef]
    [Google Scholar]
  4. Dickson, R. C. & Lester, R. L. ( 2002; ). Sphingolipid functions in Saccharomyces cerevisiae. Biochim Biophys Acta 1583, 13–25.[CrossRef]
    [Google Scholar]
  5. Hanaoka, N., Umeyama, T., Ueno, K., Ueda, K., Beppu, T., Fugo, H., Uehara, Y. & Niimi, M. ( 2005; ). A putative dual-specific protein phosphatase encoded by YVH1 controls growth, filamentation and virulence in Candida albicans. Microbiology 151, 2223–2232.[CrossRef]
    [Google Scholar]
  6. Kawai, G. & Ikeda, Y. ( 1985; ). Structure of biologically active and inactive cerebrosides prepared from Schizophyllum commune. J Lipid Res 26, 338–343.
    [Google Scholar]
  7. Kawai, G., Ohnishi, M., Fujino, Y. & Ikeda, Y. ( 1986; ). Stimulatory effect of certain plant sphingolipids on fruiting of Schizophyllum commune. J Biol Chem 261, 779–784.
    [Google Scholar]
  8. Leipelt, M., Warnecke, D., Zähringer, U., Ott, C., Müller, F., Hube, B. & Heinz, E. ( 2001; ). Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi. J Biol Chem 276, 33621–33629.[CrossRef]
    [Google Scholar]
  9. Levery, S. B., Momany, M., Lindsey, R., Toledo, M. S., Shayman, J. A., Fuller, M., Brooks, K., Doong, R. L., Straus, A. H. & Takahashi, H. K. ( 2002; ). Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP-Glc : ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth. FEBS Lett 525, 59–64.[CrossRef]
    [Google Scholar]
  10. Liu, H., Köhler, J. & Fink, G. R. ( 1994; ). Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266, 1723–1726.[CrossRef]
    [Google Scholar]
  11. Martin, S. W. & Konopka, J. B. ( 2004; ). Lipid raft polarization contributes to hyphal growth in Candida albicans. Eukaryot Cell 3, 675–684.[CrossRef]
    [Google Scholar]
  12. Merrill, A. H., Jr, Schmelz, E. M., Dillehay, D. L., Spiegel, S., Shayman, J. A., Schroeder, J. J., Riley, R. T., Voss, K. A. & Wang, E. ( 1997; ). Sphingolipids – the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol 142, 208–225.[CrossRef]
    [Google Scholar]
  13. Monk, B. C., Niimi, K., Lin, S., Knight, A., Kardos, T. B., Cannon, R. D., Parshot, R., King, A., Lun, D. & Harding, D. R. ( 2005; ). Surface-active fungicidal D-peptide inhibitors of the plasma membrane proton pump that block azole resistance. Antimicrob Agents Chemother 49, 57–70.[CrossRef]
    [Google Scholar]
  14. Murad, A. M., Lee, P. R., Broadbent, I. D., Barelle, C. J. & Brown, A. J. ( 2000; ). CIp10, an efficient and convenient integrating vector for Candida albicans. Yeast 16, 325–327.[CrossRef]
    [Google Scholar]
  15. Pinto, M. R., Rodrigues, M. L., Travassos, L. R., Haido, R. M., Wait, R. & Barreto-Bergter, E. ( 2002; ). Characterization of glucosylceramides in Pseudallescheria boydii and their involvement in fungal differentiation. Glycobiology 12, 251–260.[CrossRef]
    [Google Scholar]
  16. Ramamoorthy, V., Cahoon, E. B., Li, J., Thokala, M., Minto, R. E. & Shah, D. M. ( 2007; ). Glucosylceramide synthase is essential for alfalfa defensin-mediated growth inhibition but not for pathogenicity of Fusarium graminearum. Mol Microbiol 66, 771–786.[CrossRef]
    [Google Scholar]
  17. Rittershaus, P. C., Kechichian, T. B., Allegood, J. C., Merrill, A. H., Jr, Hennig, M., Luberto, C. & Del Poeta, M. ( 2006; ). Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. J Clin Invest 116, 1651–1659.[CrossRef]
    [Google Scholar]
  18. Rodrigues, M. L., Travassos, L. R., Miranda, K. R., Franzen, A. J., Rozental, S., de Souza, W., Alviano, C. S. & Barreto-Bergter, E. ( 2000; ). Human antibodies against a purified glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth. Infect Immun 68, 7049–7060.[CrossRef]
    [Google Scholar]
  19. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  20. Sperling, P. & Heinz, E. ( 2003; ). Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 1632, 1–15.[CrossRef]
    [Google Scholar]
  21. Sperling, P., Zähringer, U. & Heinz, E. ( 1998; ). A sphingolipid desaturase from higher plants. Identification of a new cytochrome b 5 fusion protein. J Biol Chem 273, 28590–28596.[CrossRef]
    [Google Scholar]
  22. Takakuwa, N., Kinoshita, M., Oda, Y. & Ohnishi, M. ( 2002; ). Isolation and characterization of the genes encoding Δ8-sphingolipid desaturase from Saccharomyces kluyveri and Kluyveromyces lactis. Curr Microbiol 45, 459–461.[CrossRef]
    [Google Scholar]
  23. Tanji, M., Kinoshita, M., Yada, H., Yamane, M., Kakuta, Y., Motoshima, H., Oda, Y. & Ohnishi, M. ( 2004; ). Effects of growth temperature on cerebroside content and chemical composition in Kluyveromyces lactis. J Oleo Sci 53, 127–133.[CrossRef]
    [Google Scholar]
  24. Ternes, P., Franke, S., Zähringer, U., Sperling, P. & Heinz, E. ( 2002; ). Identification and characterization of a sphingolipid Δ4-desaturase family. J Biol Chem 277, 25512–25518.[CrossRef]
    [Google Scholar]
  25. Ternes, P., Sperling, P., Albrecht, S., Franke, S., Cregg, J. M., Warnecke, D. & Heinz, E. ( 2006; ). Identification of fungal sphingolipid C9-methyltransferases by phylogenetic profiling. J Biol Chem 281, 5582–5592.
    [Google Scholar]
  26. Thevissen, K., Warnecke, D. C., François, I. E., Leipelt, M., Heinz, E., Ott, C., Zähringer, U., Thomma, B. P., Ferket, K. K. & Cammue, B. P. ( 2004; ). Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem 279, 3900–3905.
    [Google Scholar]
  27. Umeyama, T., Nagai, Y., Niimi, M. & Uehara, Y. ( 2002; ). Construction of FLAG tagging vectors for Candida albicans. Yeast 19, 611–618.[CrossRef]
    [Google Scholar]
  28. Umeyama, T., Kaneko, A., Nagai, Y., Hanaoka, N., Tanabe, K., Takano, Y., Niimi, M. & Uehara, Y. ( 2005; ). Candida albicans protein kinase CaHsl1p regulates cell elongation and virulence. Mol Microbiol 55, 381–395.
    [Google Scholar]
  29. Warnecke, D. & Heinz, E. ( 2003; ). Recently discovered functions of glucosylceramides in plants and fungi. Cell Mol Life Sci 60, 919–941.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018788-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018788-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error