1887

Abstract

Ceramides and glycosylceramides, including desaturated long-chain bases, are present in most fungi as well as animals and plants. However, as the budding yeast is not capable of desaturating long-chain bases, little is known about the physiological roles of these compounds in fungi. To investigate the necessity of desaturation of long-chain backbones in ceramides and glucosylceramides in fungal cells, we have identified and characterized a sphingolipid Δ-desaturase (SLD) gene from the pathogenic yeast . Gene disruption of the homologue led to the accumulation of ()-sphing-4-enine, a main substrate for the SLD enzyme. Introducing the gene homologue into these mutant cells resulted in the recovery of synthesis of (, )-sphinga-4,8-dienine and this gene homologue was therefore identified as a - gene. Additionally, the disruptant of had a decreased hyphal growth rate compared with the wild-type strain. These results suggest that Δ-desaturation of long-chain bases in ceramides plays a role in the morphogenesis of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018788-0
2008-12-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3795.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018788-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. 1992; Current Protocols in Molecular Biology New York: Green and Wiley-Interscience;
    [Google Scholar]
  2. Bollinger C. R., Teichgräber V., Gulbins E.. 2005; Ceramide-enriched membrane domains. Biochim Biophys Acta1746:284–294
    [Google Scholar]
  3. Chazal N., Gerlier D.. 2003; Virus entry, assembly, budding, and membrane rafts. Microbiol Mol Biol Rev67:226–237
    [Google Scholar]
  4. Dickson R. C., Lester R. L.. 2002; Sphingolipid functions in Saccharomyces cerevisiae. Biochim Biophys Acta1583:13–25
    [Google Scholar]
  5. Hanaoka N., Umeyama T., Ueno K., Ueda K., Beppu T., Fugo H., Uehara Y., Niimi M.. 2005; A putative dual-specific protein phosphatase encoded by YVH1 controls growth, filamentation and virulence in Candida albicans. Microbiology151:2223–2232
    [Google Scholar]
  6. Kawai G., Ikeda Y.. 1985; Structure of biologically active and inactive cerebrosides prepared from Schizophyllum commune. J Lipid Res26:338–343
    [Google Scholar]
  7. Kawai G., Ohnishi M., Fujino Y., Ikeda Y.. 1986; Stimulatory effect of certain plant sphingolipids on fruiting of Schizophyllum commune. J Biol Chem261:779–784
    [Google Scholar]
  8. Leipelt M., Warnecke D., Zähringer U., Ott C., Müller F., Hube B., Heinz E.. 2001; Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi. J Biol Chem276:33621–33629
    [Google Scholar]
  9. Levery S. B., Momany M., Lindsey R., Toledo M. S., Shayman J. A., Fuller M., Brooks K., Doong R. L., Straus A. H., Takahashi H. K.. 2002; Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP-Glc : ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth. FEBS Lett525:59–64
    [Google Scholar]
  10. Liu H., Köhler J., Fink G. R.. 1994; Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science266:1723–1726
    [Google Scholar]
  11. Martin S. W., Konopka J. B.. 2004; Lipid raft polarization contributes to hyphal growth in Candida albicans. Eukaryot Cell3:675–684
    [Google Scholar]
  12. Merrill A. H. Jr, Schmelz E. M., Dillehay D. L., Spiegel S., Shayman J. A., Schroeder J. J., Riley R. T., Voss K. A., Wang E.. 1997; Sphingolipids – the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol142:208–225
    [Google Scholar]
  13. Monk B. C., Niimi K., Lin S., Knight A., Kardos T. B., Cannon R. D., Parshot R., King A., Lun D., Harding D. R.. 2005; Surface-active fungicidal D-peptide inhibitors of the plasma membrane proton pump that block azole resistance. Antimicrob Agents Chemother49:57–70
    [Google Scholar]
  14. Murad A. M., Lee P. R., Broadbent I. D., Barelle C. J., Brown A. J.. 2000; CIp10, an efficient and convenient integrating vector for Candida albicans. Yeast16:325–327
    [Google Scholar]
  15. Pinto M. R., Rodrigues M. L., Travassos L. R., Haido R. M., Wait R., Barreto-Bergter E.. 2002; Characterization of glucosylceramides in Pseudallescheria boydii and their involvement in fungal differentiation. Glycobiology12:251–260
    [Google Scholar]
  16. Ramamoorthy V., Cahoon E. B., Li J., Thokala M., Minto R. E., Shah D. M.. 2007; Glucosylceramide synthase is essential for alfalfa defensin-mediated growth inhibition but not for pathogenicity of Fusarium graminearum. Mol Microbiol66:771–786
    [Google Scholar]
  17. Rittershaus P. C., Kechichian T. B., Allegood J. C., Merrill A. H. Jr, Hennig M., Luberto C., Del Poeta M.. 2006; Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans. J Clin Invest116:1651–1659
    [Google Scholar]
  18. Rodrigues M. L., Travassos L. R., Miranda K. R., Franzen A. J., Rozental S., de Souza W., Alviano C. S., Barreto-Bergter E.. 2000; Human antibodies against a purified glucosylceramide from Cryptococcus neoformans inhibit cell budding and fungal growth. Infect Immun68:7049–7060
    [Google Scholar]
  19. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Sperling P., Heinz E.. 2003; Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta1632:1–15
    [Google Scholar]
  21. Sperling P., Zähringer U., Heinz E.. 1998; A sphingolipid desaturase from higher plants. Identification of a new cytochrome b 5 fusion protein. J Biol Chem273:28590–28596
    [Google Scholar]
  22. Takakuwa N., Kinoshita M., Oda Y., Ohnishi M.. 2002; Isolation and characterization of the genes encoding Δ8-sphingolipid desaturase from Saccharomyces kluyveri and Kluyveromyces lactis. Curr Microbiol45:459–461
    [Google Scholar]
  23. Tanji M., Kinoshita M., Yada H., Yamane M., Kakuta Y., Motoshima H., Oda Y., Ohnishi M.. 2004; Effects of growth temperature on cerebroside content and chemical composition in Kluyveromyces lactis. J Oleo Sci53:127–133
    [Google Scholar]
  24. Ternes P., Franke S., Zähringer U., Sperling P., Heinz E.. 2002; Identification and characterization of a sphingolipid Δ4-desaturase family. J Biol Chem277:25512–25518
    [Google Scholar]
  25. Ternes P., Sperling P., Albrecht S., Franke S., Cregg J. M., Warnecke D., Heinz E.. 2006; Identification of fungal sphingolipid C9-methyltransferases by phylogenetic profiling. J Biol Chem281:5582–5592
    [Google Scholar]
  26. Thevissen K., Warnecke D. C., François I. E., Leipelt M., Heinz E., Ott C., Zähringer U., Thomma B. P., Ferket K. K., Cammue B. P.. 2004; Defensins from insects and plants interact with fungal glucosylceramides. J Biol Chem279:3900–3905
    [Google Scholar]
  27. Umeyama T., Nagai Y., Niimi M., Uehara Y.. 2002; Construction of FLAG tagging vectors for Candida albicans. Yeast19:611–618
    [Google Scholar]
  28. Umeyama T., Kaneko A., Nagai Y., Hanaoka N., Tanabe K., Takano Y., Niimi M., Uehara Y.. 2005; Candida albicans protein kinase CaHsl1p regulates cell elongation and virulence. Mol Microbiol55:381–395
    [Google Scholar]
  29. Warnecke D., Heinz E.. 2003; Recently discovered functions of glucosylceramides in plants and fungi. Cell Mol Life Sci60:919–941
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018788-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018788-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error