1887

Abstract

Curcuminoids, which are produced specifically by plants of the order Zingiberales, have long been used as food additives because of their aromatic, stimulant and colouring properties and as traditional Asian medicines because of their anti-tumour, antioxidant and hepatoprotective activities. Curcuminoids are therefore attractive targets for metabolic engineering. An artificial curcuminoid biosynthetic pathway, including reactions of phenylalanine ammonia-lyase (PAL) from the yeast , 4-coumarate : CoA ligase (4CL) from and curcuminoid synthase (CUS) from rice (), a type III polyketide synthase, was constructed in for the production of curcuminoids. Cultivation of the recombinant cells in the presence of tyrosine or phenylalanine, or both, led to production of bisdemethoxycurcumin, dicinnamoylmethane and cinnamoyl--coumaroylmethane. Another system carrying and genes was also used for high-yield production of curcuminoids from exogenously supplemented phenylpropanoid acids: -coumaric acid, cinnamic acid and ferulic acid. The yields of curucminoids were up to ∼100 mg l. Furthermore, this system gave approximately 60 mg curcumin l from 10 g rice bran pitch, an industrial waste discharged during rice edible oil production, as a source of ferulic acid.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018721-0
2008-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/9/2620.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018721-0&mimeType=html&fmt=ahah

References

  1. Anand P., Kunnumakkara A. B., Newman R. A., Aggarwal B. B. 2007; Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818
    [Google Scholar]
  2. Austin M. B., Noel J. P. 2003; The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110
    [Google Scholar]
  3. Beekwilder J., Wolswinkel R., Jonker H., Hall R., Ric de Vos C. H., Bovy A. 2006; Production of resveratrol in recombinant microorganisms. Appl Environ Microbiol 72:5670–5672
    [Google Scholar]
  4. Beekwilder J., van der Meer I. M., Sibbesen O., Broekgaarden M., Qvist I., Mikkelsen J. D., Hall R. D. 2007; Microbial production of natural raspberry ketone. Biotechnol J 2:1270–1279
    [Google Scholar]
  5. Bruck R., Ashkenazi M., Weiss S., Goldiner I., Shapiro H., Aeed H., Genina O., Helpern Z., Pines M. 2007; Prevention of liver cirrhosis in rats by curcumin. Liver Int 27:373–383
    [Google Scholar]
  6. Duvoix A., Blasius R., Delhalle S., Schnekenburger M., Morceau F., Henry E., Dicato M., Diederich M. 2005; Chemopreventive and therapeutic effects of curcumin. Cancer Lett 223:181–190
    [Google Scholar]
  7. Hwang E. I., Kaneko M., Ohnishi Y., Horinouchi S. 2003; Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl Environ Microbiol 69:2699–2706
    [Google Scholar]
  8. Jiang H., Wood K. V., Morgan J. A. 2005; Metabolic engineering of the phenylpropanoid pathway in Saccharomyces cerevisiae . Appl Environ Microbiol 71:2962–2969
    [Google Scholar]
  9. Kaneko M., Hwang E. I., Ohnishi Y., Horinouchi S. 2003; Heterologous production of flavanones in Escherichia coli : potential for combinatorial biosynthesis of flavonoids in bacteria. J Ind Microbiol Biotechnol 30:456–461
    [Google Scholar]
  10. Katsuyama Y., Funa N., Horinouchi S. 2007a; Precursor-directed biosynthesis of stilbene methyl ethers in Escherichia coli . Biotechnol J 2:1286–1293
    [Google Scholar]
  11. Katsuyama Y., Matsuzawa M., Funa N., Horinouchi S. 2007b; In vitro synthesis of curcuminoids by type III polyketide synthase from Oryza sativa . J Biol Chem 282:37702–37709
    [Google Scholar]
  12. Katsuyama Y., Miyahisa I., Funa N., Horinouchi S. 2007c; Synthesis of unnatural flavonoids and stilbenes by exploiting the plant biosynthetic pathway in Escherichia coli . Chem Biol 14:613–621
    [Google Scholar]
  13. Katsuyama Y., Miyahisa I., Funa N., Horinouchi S. 2007d; One-pot synthesis of genistein from tyrosine by coincubation of genetically engineered Escherichia coli and Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 73:1143–1149
    [Google Scholar]
  14. Maheshwari R. K., Singh A. K., Gaddipati J., Srimal R. C. 2006; Multiple biological activities of curcumin: a short review. Life Sci 78:2081–2087
    [Google Scholar]
  15. Miyahisa I., Kaneko M., Funa N., Kawasaki H., Kojima H., Ohnishi Y., Horinouchi S. 2005; Efficient production of (2 S )-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. Appl Microbiol Biotechnol 68:498–504
    [Google Scholar]
  16. Miyahisa I., Funa N., Ohnishi Y., Martens S., Moriguchi T., Horinouchi S. 2006; Combinatorial biosynthesis of flavones and flavonols in Escherichia coli . Appl Microbiol Biotechnol 71:53–58
    [Google Scholar]
  17. Muriel P., Rivera-Espinoza Y. 2008; Beneficial drugs for liver disease. J Appl Toxicol 28:93–103
    [Google Scholar]
  18. Nanji A. A., Jokelainen K., Tipoe G. L., Rahemtulla A., Thomas P., Dannenberg A. J. 2003; Curcumin prevents alcohol-induced liver disease in rats inhibiting the expression of NF- κ B-dependent genes. Am J Physiol Gastrointest Liver Physiol 284:G321–G327
    [Google Scholar]
  19. Renuka Devi R., Arumughan C. 2007; Phytochemical characterization of defatted rice bran and optimization of a process for their extraction and enrichment. Bioresour Technol 98:3037–3043
    [Google Scholar]
  20. Schröder J. 1997; A family of plant-specific polyketide synthases: facts and predictions. Trends Plant Sci 2:373–378
    [Google Scholar]
  21. Sharma R. A., Gescher A. J., Steward W. P. 2005; Curcumin: the story so far. Eur J Cancer 41:1955–1968
    [Google Scholar]
  22. Shishodia S., Chaturvedi M. M., Aggarwal B. B. 2007; Role of curcumin in cancer therapy. Curr Probl Cancer 31:243–305
    [Google Scholar]
  23. Taniguchi H., Hosoda A., Tsuno T., Maruta Y., Nomura E. 1999; Preparation of ferulic acid and its application for the synthesis of cancer chemopreventive agents. Anticancer Res 19:3757–3761
    [Google Scholar]
  24. Watts K. T., Lee P. C., Schmidt-Dannert C. 2004; Exploring recombinant flavonoid biosynthesis in metabolically engineered Escherichia coli . Chembiochem 5:500–507
    [Google Scholar]
  25. Yan Y., Chemler J., Huang L., Martens S., Koffas M. A. G. 2005a; Metabolic engineering of anthocyanin biosynthesis in Escherichia coli . Appl Environ Microbiol 71:3617–3623
    [Google Scholar]
  26. Yan Y., Kohli A., Koffas M. A. G. 2005b; Biosynthesis of natural flavanones in Saccharomyces cerevisiae . Appl Environ Microbiol 71:5610–5613
    [Google Scholar]
  27. Zhang Y., Li S.-Z., Li J., Pan X., Cahoon R. E., Jaworski J. G., Wang X., Jez J. M., Chen F., Yu O. 2006; Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and mammalian cells. J Am Chem Soc 128:13030–13031
    [Google Scholar]
  28. Zheng L., Zheng P., Sun Z., Bai Y., Wang J., Guo X. 2007; Production of vanillin from waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus . Bioresour Technol 98:1115–1119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018721-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018721-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error