1887

Abstract

The periplasmic thiol–disulfide oxidoreductase SoxS is essential for chemotrophic growth of with thiosulfate. To trap its periplasmic partner, the cysteine residues of the CysXaaXaaCys motif of SoxS (11 kDa) were changed to alanine by site-directed mutagenesis. The disrupted gene of the homogenote mutant G ΩS was complemented with plasmids carrying the mutated [C13A] or [C16A] gene. Strain G ΩS(pRD179.6[C16A]) displayed a marginal thiosulfate-oxidizing activity, suggesting that Cys13 binds the target protein. Evidence is presented that SoxS specifically binds SoxY. (i) Immunoblot analysis using non-reducing SDS gel electrophoresis and anti-SoxS and anti-SoxYZ antibodies identified the respective antigens of strain G ΩS(pRD179.6[C16A]) at the 25 kDa position, suggesting an adduct of about 14 kDa, close to the value expected for SoxY migration. (ii) A mutant unable to produce SoxYZ, such as strain G ΩX(pRD187.7[C16A]), did not form a SoxS(C16A) adduct, while addition of homogeneous SoxYZ resulted in the 25 kDa adduct. (iii) The SoxY and SoxZ subunits were distinguished by site-directed mutagenesis of the cysteine residue in SoxZ. SoxYZ(C53S) formed the 25 kDa adduct with SoxS(C16A). These results demonstrate that the target of SoxS is the sulfur-binding protein SoxY of the SoxYZ complex. As SoxYZ is reversibly inactivated, SoxS may activate SoxYZ as a crucial function for chemotrophy of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018655-0
2008-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/7/1980.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018655-0&mimeType=html&fmt=ahah

References

  1. Bamford V. A., Bruno S., Rasmussen T., Appia-Ayme C., Cheesman M. R., Berks B. C., Hemmings A. M. 2002; Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme. EMBO J 21:5599–5610
    [Google Scholar]
  2. Bardischewsky F., Friedrich C. G. 2001a; Identification of ccdA in Paracoccus pantotrophus GB17: disruption of ccdA causes complete deficiency in c-type cytochromes. J Bacteriol 183:257–263
    [Google Scholar]
  3. Bardischewsky F., Friedrich C. G. 2001b; The shxVW locus is essential for oxidation of inorganic sulfur and molecular hydrogen by Paracoccus pantotrophus GB17: a novel function in lithotrophy. FEMS Microbiol Lett 202:215–220
    [Google Scholar]
  4. Bardischewsky F., Quentmeier A., Rother D., Hellwig P., Kostka S., Friedrich C. G. 2005; Sulfur dehydrogenase of Paracoccus pantotrophus: the heme-2 domain of the molybdoprotein cytochrome c complex is dispensable for catalytic activity. Biochemistry 44:7024–7034
    [Google Scholar]
  5. Bardischewsky F., Fischer J., Höller B., Friedrich C. G. 2006; SoxV transfers electrons to the periplasm of Paracoccus pantotrophus – an essential reaction for chemotrophic sulfur oxidation. Microbiology 152:465–472
    [Google Scholar]
  6. Chung C. T., Niemela S. L., Miller R. H. 1989; One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86:2172–2175
    [Google Scholar]
  7. Crowe J., Henco K. 1992 The QIAexpressionist, 2nd edn. Chatsworth, CA: Qiagen;
  8. Friedrich C. G., Quentmeier A., Bardischewsky F., Rother D., Kraft R., Kostka S., Prinz H. 2000; Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol 182:4677–4687
    [Google Scholar]
  9. Friedrich C. G., Rother D., Bardischewsky F., Quentmeier A., Fischer J. 2001; Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism?. Appl Environ Microbiol 67:2873–2882
    [Google Scholar]
  10. Friedrich C. G., Bardischewsky F., Rother D., Quentmeier A., Fischer J. 2005; Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259
    [Google Scholar]
  11. Friedrich C. G., Quentmeier A., Bardischewsky F., Rother D., Orawski G., Hellwig P., Fischer J. 2008; Redox control of chemotrophic sulfur oxidation of Paracoccus pantotrophus. In Microbial Sulfur Metabolism pp 139–150 Edited by Dahl C., Friedrich C. G. Berlin: Springer Verlag;
    [Google Scholar]
  12. Kadokura H., Katzen F., Beckwith J. 2003; Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 72:111–135
    [Google Scholar]
  13. Kelly D. P., Shergill J. K., Lu W.-P., Wood A. P. 1997; Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie Van Leeuwenhoek 71:95–107
    [Google Scholar]
  14. Kieser T. 1984; Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli. Plasmid 12:19–36
    [Google Scholar]
  15. Kishigami S., Kanaya E., Kikuchi M., Ito K. 1995; DsbA–DsbB interaction through their active site cysteines. Evidence from an odd cysteine mutant of DsbA. J Biol Chem 270:17072–17074
    [Google Scholar]
  16. Knauf V. C., Nester E. W. 1982; Wide host range cloning vectors: a cosmid clone bank of an Agrobacterium Ti plasmid. Plasmid 8:45–54
    [Google Scholar]
  17. Kramer B., Kramer W., Fritz H. J. 1984; Different base/base mismatches are corrected with different efficiencies by the methyl-directed DNA mismatch-repair system of E. coli. Cell 38:879–887
    [Google Scholar]
  18. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  19. Linke K., Jakob U. 2003; Not every disulfide lasts forever: disulfide bond formation as a redox switch. Antioxid Redox Signal 5:425–434
    [Google Scholar]
  20. Ludwig W., Mittenhuber G., Friedrich C. G. 1993; Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int J Syst Bacteriol 43:363–367
    [Google Scholar]
  21. Nakamoto H., Bardwell J. C. 2004; Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. Biochim Biophys Acta 1694111–119
    [Google Scholar]
  22. Orawski G., Bardischewsky F., Quentmeier A., Rother D., Friedrich C. G. 2007; The periplasmic thioredoxin SoxS plays a key role in activation in vivo of chemotrophic sulfur oxidation of Paracoccus pantotrophus. Microbiology 153:1081–1086
    [Google Scholar]
  23. Pfitzner U., Odenwald A., Ostermann T., Weingard L., Ludwig B., Richter O. M. 1998; Cytochrome c oxidase (heme aa3) from Paracoccus denitrificans: analysis of mutations in putative proton channels of subunit I. J Bioenerg Biomembr 30:89–97
    [Google Scholar]
  24. Quentmeier A., Friedrich C. G. 2001; The cysteine residue of the SoxY protein as the active site of protein-bound sulfur oxidation of Paracoccus pantotrophus GB17. FEBS Lett 503:168–172
    [Google Scholar]
  25. Quentmeier A., Hellwig P., Bardischewsky F., Grelle G., Kraft R., Friedrich C. G. 2003; Sulfur oxidation in Paracoccus pantotrophus: interaction of the sulfur-binding protein SoxYZ with the dimanganese SoxB protein. Biochem Biophys Res Commun 312:1011–1018
    [Google Scholar]
  26. Quentmeier A., Janning P., Hellwig P., Friedrich C. G. 2007; Activation of the heterodimeric central complex SoxYZ of chemotrophic sulfur oxidation is linked to a conformational change and SoxY–Y interprotein disulfide formation. Biochemistry 46:10990–10998
    [Google Scholar]
  27. Rainey F. A., Kelly D. P., Stackebrandt E., Burghardt J., Hiraishi A., Katayama Y., Wood A. P. 1999; A re-evaluation of the taxonomy of Paracoccus denitrificans and a proposal for the combination Paracoccus pantotrophus comb. nov. Int J Syst Bacteriol 49:645–651
    [Google Scholar]
  28. Ritz D., Beckwith J. 2002; Redox state of cytoplasmic thioredoxin. Methods Enzymol 347:360–370
    [Google Scholar]
  29. Robertson L. A., Kuenen J. G. 1983; Thiosphaera pantotropha gen. nov. sp. nov: a facultatively anaerobic, facultative autotrophic sulphur bacterium. J Gen Microbiol 129:2847–2855
    [Google Scholar]
  30. Rother D., Henrich H.-J., Quentmeier A., Bardischewsky F., Friedrich C. G. 2001; Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur oxidizing system in Paracoccus pantotrophus GB17. J Bacteriol 183:4499–4508
    [Google Scholar]
  31. Rother D., Orawski G., Bardischewsky F., Friedrich C. G. 2005; SoxRS-mediated regulation of chemotrophic sulfur oxidation in Paracoccus pantotrophus. Microbiology 151:1707–1716
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  33. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467
    [Google Scholar]
  34. Sauvé V, Bruno S., Berks B. C., Hemmings A. M. 2007; The SoxYZ complex carries sulfur cycle intermediates on a peptide swinging arm. J Biol Chem 282:23194–23204
    [Google Scholar]
  35. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1:784–790
    [Google Scholar]
  36. Sørbø B. 1957; A colorimetric method for the determination of thiosulfate. Biochim Biophys Acta 23:412–416
    [Google Scholar]
  37. Stout J., Van Driessche G., Savvides S. N., Van Beeumen J. 2007; X-ray crystallographic analysis of the sulfur carrier protein SoxY from Chlorobium limicola f. thiosulfatophilum reveals a tetrameric structure. Protein Sci 16:589–601
    [Google Scholar]
  38. Tapley T. L., Eichner T., Gleiter S., Ballou D. P., Bardwell J. C. A. 2007; Kinetic characterization of the disulfide bond-forming enzyme DsbB. J Biol Chem 282:10263–10271
    [Google Scholar]
  39. Thöny-Meyer L. 1997; Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol Biol Rev 61:337–376
    [Google Scholar]
  40. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354
    [Google Scholar]
  41. Weber K., Pringle J. R., Osborn M. 1972; Measurement of molecular weights by electrophoresis on SDS polyacrylamide gel. Methods Enzymol 26:3–27
    [Google Scholar]
  42. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  43. Zell R., Fritz H. J. 1987; DNA mismatch-repair in Escherichia coli counteracting the hydrolytic deamination of 5-methyl-cytosine residues. EMBO J 6:1809–1815
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018655-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018655-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error