Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces Free

Abstract

Using a parallel-plate flow chamber, the hydrodynamic shear forces to prevent bacterial adhesion () and to detach adhering bacteria () were evaluated for hydrophilic glass, hydrophobic, dimethyldichlorosilane (DDS)-coated glass and six different bacterial strains, in order to test the following three hypotheses. 1. A strong hydrodynamic shear force to prevent adhesion relates to a strong hydrodynamic shear force to detach an adhering organism. 2. A weak hydrodynamic shear force to detach adhering bacteria implies that more bacteria will be stimulated to detach by passing an air–liquid interface (an air bubble) through the flow chamber. 3. DLVO (Derjaguin, Landau, Verwey, Overbeek) interactions determine the characteristic hydrodynamic shear forces to prevent adhesion and to detach adhering micro-organisms as well as the detachment induced by a passing air–liquid interface. varied from 0.03 to 0.70 pN, while varied from 0.31 to over 19.64 pN, suggesting that after initial contact, strengthening of the bond occurs. Generally, it was more difficult to detach bacteria from DDS-coated glass than from hydrophilic glass, which was confirmed by air bubble detachment studies. Calculated attractive forces based on the DLVO theory () towards the secondary interaction minimum were higher on glass than on DDS-coated glass. In general, all three hypotheses had to be rejected, showing that it is important to distinguish between forces acting parallel (hydrodynamic shear) and perpendicular (DLVO, air–liquid interface passages) to the substratum surface.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018622-0
2008-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/10/3122.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018622-0&mimeType=html&fmt=ahah

References

  1. Abu-Lail N. I., Camesano T. A. 2003; Role of lipopolysaccharides in the adhesion, retention, and transport of Escherichia coli JM109. Environ Sci Technol 37:2173–2183
    [Google Scholar]
  2. Agladze K., Wang X., Romeo T. 2005; Spatial periodicity of Escherichia coli K-12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA. J Bacteriol 187:8237–8246
    [Google Scholar]
  3. Azeredo J., Visser J., Oliveira R. 1999; Exopolymers in bacterial adhesion: interpretation in terms of DLVO and XDLVO theories. Colloids Surf B Biointerfaces 14:141–148
    [Google Scholar]
  4. Bakker D. P., Busscher H. J., Van der Mei H. C. 2002; Bacterial deposition in a parallel plate and a stagnation point flow chamber: microbial adhesion mechanisms depend on the mass transport conditions. Microbiology 148:597–603
    [Google Scholar]
  5. Bakker D. P., Postmus B. R., Busscher H. J., Van der Mei H. C. 2004; Bacterial strains isolated from different niches can exhibit different patterns of adhesion to substrata. Appl Environ Microbiol 70:3758–3760
    [Google Scholar]
  6. Batra A., Paria S., Manohar C., Khilar K. C. 2001; Removal of surface adhered particles by surfactants and fluid motions. AIChE J 47:2557–2565
    [Google Scholar]
  7. Bos R., Van der Mei H. C., Busscher H. J. 1999; Physico-chemistry of initial microbial adhesive interactions – its mechanisms and methods for study. FEMS Microbiol Rev 23:179–230
    [Google Scholar]
  8. Bowen W. R., Fenton A. S., Lovitt R. W., Wright C. J. 2002; The measurement of Bacillus mycoides spore adhesion using atomic force microscopy, simple counting methods, and a spinning disk technique. Biotechnol Bioeng 79:170–179
    [Google Scholar]
  9. Busalmen J. P., de Sanchez S. R. 2001; Adhesion of Pseudomonas fluorescens (ATCC 17552) to nonpolarized and polarized thin films of gold. Appl Environ Microbiol 67:3188–3194
    [Google Scholar]
  10. Busscher H. J., Van der Mei H. C. 2006; Microbial adhesion in flow displacement systems. Clin Microbiol Rev 19:127–141
    [Google Scholar]
  11. Cantat I., Misbah C. 1999; Lift force and dynamical unbinding of adhering vesicles under shear flow. Phys Rev Lett 83:880–883
    [Google Scholar]
  12. Cao T., Tang H. Y., Liang X. M., Wang A. F., Auner G. W., Salley S. O., Ng K. Y. S. 2006; Nanoscale investigation on adhesion of E. coli surface modified silicone using atomic force microscopy. Biotechnol Bioeng 94:167–176
    [Google Scholar]
  13. Costerton J. W., Stewart P. S., Greenberg E. P. 1999; Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322
    [Google Scholar]
  14. Das S. K., Schechter R. S., Sharma M. M. 1994; The role of surface-roughness and contact deformation on the hydrodynamic detachment of particles from surfaces. J Colloid Interface Sci 164:63–77
    [Google Scholar]
  15. De Kerchove A. J., Elimelech M. 2008; Calcium and magnesium cations enhance the adhesion of motile and nonmotile Pseudomonas aeruginosa on alginate films. Langmuir 24:3392–3399
    [Google Scholar]
  16. Duddridge J. E., Kent C. A., Laws J. F. 1982; Effect of surface shear-stress on the attachment of Pseudomonas fluorescens to stainless-steel under defined flow conditions. Biotechnol Bioeng 24:153–164
    [Google Scholar]
  17. Elimelech M. 1994; Particle deposition on ideal collectors from dilute flowing suspensions – mathematical formulation, numerical-solution, and simulations. Sea Technol 4:186–212
    [Google Scholar]
  18. Fallman E., Schedin S., Jass J., Andersson M., Uhlin B. E., Axner O. 2004; Optical tweezers based force measurement system for quantitating binding interactions: system design and application for the study of bacterial adhesion. Biosens Bioelectron 19:1429–1437
    [Google Scholar]
  19. Flemming H. C. 2002; Biofouling in water systems – cases, causes and counter measures. Appl Microbiol Biotechnol 59:629–640
    [Google Scholar]
  20. Gomez-Suarez C., Busscher H. J., Van der Mei H. C. 2001; Analysis of bacterial detachment from substratum surfaces by the passage of air–liquid interfaces. Appl Environ Microbiol 67:2531–2537
    [Google Scholar]
  21. Higashi J. M., Wang I. W., Shlaes D. M., Anderson J. M., Marchant R. E. 1998; Adhesion of Staphylococcus epidermidis and transposon mutant strains to hydrophobic polyethylene. J Biomed Mater Res 39:341–350
    [Google Scholar]
  22. Jacobs A., Lafolie F., Herry J. M., Debroux M. 2007; Kinetic adhesion of bacterial cells to sand: cell surface properties and adhesion rate. Colloids Surf B Biointerfaces 59:35–45
    [Google Scholar]
  23. Jucker B. A., Zehnder A. J. B., Harms H. 1998; Quantification of polymer interactions in bacterial adhesion. Environ Sci Technol 32:2909–2915
    [Google Scholar]
  24. Katsikogianni M., Missirlis Y. F. 2004; Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteria–material interactions. Eur Cell Mater 8:37–57
    [Google Scholar]
  25. Leenaars A. F. M., O'Brien S. B. G. 1989; Particle removal from silicon substrates using surface-tension forces. Philips J Res 44:183–209
    [Google Scholar]
  26. Lyklema J. 1991 Electrochemistry and its application to colloids and interfaces. In Fundamentals of Interface and Colloid Science London: Academic Press;
    [Google Scholar]
  27. Meinders J. M., Van der Mei H. C., Busscher H. J. 1995; Deposition efficiency and reversibility of bacterial adhesion under flow. J Colloid Interface Sci 176:329–341
    [Google Scholar]
  28. Mendez-Vilas A., Gallardo-Moreno A. M., Gonzalez-Martin M. L. 2006; Nano-mechanical exploration of the surface and sub-surface of hydrated cells of Staphylococcus epidermidis . Antonie Van Leeuwenhoek 89:373–386
    [Google Scholar]
  29. Mohamed N., Teeters M. A., Patti J. M., Hook M., Ross J. M. 1999; Inhibition of Staphylococcus aureus adherence to collagen under dynamic conditions. Infect Immun 67:589–594
    [Google Scholar]
  30. Mohamed N., Rainier T. R., Ross J. M. 2000; Novel experimental study of receptor-mediated bacterial adhesion under the influence of fluid shear. Biotechnol Bioeng 68:628–636
    [Google Scholar]
  31. Norde W., Lyklema J. 1989; Protein adsorption and bacterial adhesion to solid-surfaces – a colloid-chemical approach. Coll Surf 38:1–13
    [Google Scholar]
  32. Ong Y. L., Razatos A., Georgiou G., Sharma M. M. 1999; Adhesion forces between E. coli bacteria and biomaterial surfaces. Langmuir 15:2719–2725
    [Google Scholar]
  33. Owens N. F., Gingell D., Rutter P. R. 1987; Inhibition of cell-adhesion by a synthetic-polymer adsorbed to glass shown under defined hydrodynamic stress. J Cell Sci 87:667–675
    [Google Scholar]
  34. Roosjen A., Boks N. P., Van der Mei H. C., Busscher H. J., Norde W. 2005; Influence of shear on microbial adhesion to PEO-brushes and glass by convective-diffusion and sedimentation in a parallel plate flow chamber. Colloids Surf B Biointerfaces 46:1–6
    [Google Scholar]
  35. Rutter P. R., Vincent B. 1988; Attachment mechanisms in the surface growth of microorganisms. In Physiological Models in Microbiology pp 87–107 Edited by Bazin M. J., Prosser J. I. Boca Raton, FL: CRC Press;
    [Google Scholar]
  36. Sharma P. K., Rao K. H. 2003; Adhesion of Paenibacillus polymyxa on chalcopyrite and pyrite: surface thermodynamics and extended DLVO theory. Colloids Surf B Biointerfaces 29:21–38
    [Google Scholar]
  37. Shive M. S., Hasan S. M., Anderson J. M. 1999; Shear stress effects on bacterial adhesion, leukocyte adhesion, and leukocyte oxidative capacity on a polyetherurethane. J Biomed Mater Res 46:511–519
    [Google Scholar]
  38. Simpson K. H., Bowden M. G., Hook M., Anvari B. 2002; Measurement of adhesive forces between S. epidermidis and fibronectin-coated surfaces using optical tweezers. Lasers Surg Med 31:45–52
    [Google Scholar]
  39. Simpson K. H., Bowden A. G., Peacock S. J., Arya M., Hook M., Anvari B. 2004; Adherence of Staphylococcus aureus fibronectin binding protein A mutants: an investigation using optical tweezers. Biomol Eng 21:105–111
    [Google Scholar]
  40. Thomas W. E., Nilsson L. M., Forero M., Sokurenko E. V., Vogel V. 2004; Shear-dependent ‘stick-and-roll’ adhesion of type 1 fimbriated Escherichia coli . Mol Microbiol 53:1545–1557
    [Google Scholar]
  41. Triandafillu K., Balazs D. J., Aronsson B. O., Descouts P., Quoc P. T., Van Delden C., Mathieu H. J., Harms H. 2003; Adhesion of Pseudomonas aeruginosa strains to untreated and oxygen-plasma treated poly(vinyl chloride) (PVC) from endotracheal intubation devices. Biomaterials 24:1507–1518
    [Google Scholar]
  42. Vadillo-Rodriguez V., Busscher H. J., Norde W., De Vries J., Van der Mei H. C. 2004; Atomic force microscopic corroboration of bond aging for adhesion of Streptococcus thermophilus to solid substrata. J Colloid Interface Sci 278:251–254
    [Google Scholar]
  43. Van Holde K. E. 1971; Introduction in transport processes: diffusion. In Physical Biochemistry , 1st edn. pp 79–111 Edited by Holde K. E. Van. Englewood Cliffs, NJ: Prentice-Hall;
    [Google Scholar]
  44. Van Loosdrecht M. C. M., Zehnder A. J. B. 1990; Energetics of bacterial adhesion. Experientia 46:817–822
    [Google Scholar]
  45. Van Oss C. J. 1994a; Rate of decay with distance. In Interfacial Forces in Aqueous Media pp 75–88 Edited by Van Oss C. J. New York: Marcel Dekker;
    [Google Scholar]
  46. Van Oss C. J. 1994b; Relation between the Hamaker constant and the apolar surface tension component. In Interfacial Forces in Aqueous Media pp 154–160 Edited by Van Oss C. J. New York: Marcel Dekker;
    [Google Scholar]
  47. Van Oss C. J., Good R. J., Chaudhury M. 1986; The role of van der Waals forces and hydrogen bonds in hydrophobic interactions between biopolymers and low energy surfaces. J Colloid Interface Sci 111:378–390
    [Google Scholar]
  48. Van Wagenen R. A., Andrade J. D. 1980; Flat-plate streaming potential investigations – hydrodynamics and electrokinetic equivalency. J Colloid Interface Sci 76:305–314
    [Google Scholar]
  49. Vijayalakshmi S. P., Raichur A. M. 2003; The utility of Bacillus subtilis as a bioflocculant for fine coal. Colloids Surf B Biointerfaces 29:265–275
    [Google Scholar]
  50. Von Eiff C., Jansen B., Kohnen W., Becker K. 2005; Infections associated with medical devices – pathogenesis, management and prophylaxis. Drugs 65:179–214
    [Google Scholar]
  51. Walker S. L., Redman J. A., Elimelech M. 2004; Role of cell surface lipopolysaccharides in Escherichia coli K12 adhesion and transport. Langmuir 20:7736–7746
    [Google Scholar]
  52. Walt D. R., Smulow J. B., Turesky S. S., Hill R. G. 1985; The effect of gravity on initial microbial adhesion. J Colloid Interface Sci 107:334–336
    [Google Scholar]
  53. Wang I. W., Anderson J. M., Jacobs M. R., Marchant R. E. 1995; Adhesion of Staphylococcus epidermidis to biomedical polymers – contributions of surface thermodynamics and hemodynamic shear conditions. J Biomed Mater Res 29:485–493
    [Google Scholar]
  54. Xu L. C., Vadillo-Rodriguez V., Logan B. E. 2005; Residence time, loading force, pH, and ionic strength affect adhesion forces between colloids and biopolymer-coated surfaces. Langmuir 21:7491–7500
    [Google Scholar]
  55. Yiantsios S. G., Karabelas A. J. 1995; Detachment of spherical microparticles adhering on flat surfaces by hydrodynamic-forces. J Colloid Interface Sci 176:74–85
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018622-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018622-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed