1887

Abstract

In , the PA4204 gene encodes a protein with a signal peptide and a COG2706 domain of the type present in 3-carboxy-,-muconate lactonizing enzymes. A molecular model based on the structure of the YbhE phosphogluconate lactonizing enzyme shows that the enzyme has a beta-propeller (‘doughnut’) structure and a central active site comprising one histidine, one glutamic acid and two arginines. Inactivation of the PA4204 gene had profound phenotypic effects, resulting in slowly growing small colonies which frequently gave rise to larger colonies. The small colonies did not produce pyocyanin, produced reduced amounts of -acylhomoserine lactones, and had extremely low levels of 2-alkyl-4-quinolones (AQs), while the larger colonies produced pyocyanin and higher amounts of AQs, including the pseudomonas quinolone signal (PQS), compared with the wild-type strain. Mutagenesis of His 182 in PA4204 resulted in the inability of this protein to restore pyocyanin production in the PA4204 isogenic mutant, suggesting that this enzyme may share an active site with other lactonizing enzymes. The protein with signal peptide was expressed as a His fusion in and purified. Two forms were observed, suggesting that the protein is translocated. The purified enzyme cleaved ()-5-oxo-2-tetrahydrofurancarboxylic acid and -glucono--lactone, demonstrating lactonase activity. Decreased expression of the cytoplasmic phosphogluconolactonase gene () was observed in the small-colony mutant, and the mutant could not grow in the presence of mannitol or gluconate, suggesting functions in the detoxification of a gluconolactone and in sugar metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018465-0
2008-10-01
2020-09-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/10/2979.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018465-0&mimeType=html&fmt=ahah

References

  1. Aendekerk S., Ghysels B., Cornelis P., Baysse C.. 2002; Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. Microbiology148:2371–2381
    [Google Scholar]
  2. Aendekerk S., Diggle S. P., Song Z., Hoiby N., Cornelis P., Williams P., Cámara M.. 2005; The MexGHI-OpmD multidrug efflux pump controls growth, antibiotic susceptibility and virulence in Pseudomonas aeruginosa via 4-quinolone-dependent cell-to-cell communication. Microbiology151:1113–1125
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schaeffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  4. Attila C., Ueda A., Wood T. K.. 2008; PA2663 (PpyR) increases biofilm formation in Pseudomonas aeruginosa PAO1 through the psl operon and stimulates virulence and quorum-sensing phenotypes. Appl Microbiol Biotechnol78:293–307
    [Google Scholar]
  5. Bredenbruch F., Geffer R., Nimtz M., Buer J., Haussler S.. 2006; The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol8:1318–1329
    [Google Scholar]
  6. Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M.. other authors 1998; Crystallography & NMR system: new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr54:905–921
    [Google Scholar]
  7. Dietrich L. E., Price-Whelan A., Petersen A., Whiteley M., Newman D. K.. 2006; The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol61:1308–1321
    [Google Scholar]
  8. Diggle S. P., Cornelis P., Williams P., Cámara M.. 2006; 4-Quinolone signaling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol296:83–91
    [Google Scholar]
  9. Diggle S. P., Matthijs S., Wright V. J., Fletcher M. P., Chhabra S. R., Lamont I. L., Kong X., Hider R. C., Cornelis P.. other authors 2007; The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol14:87–96
    [Google Scholar]
  10. Fletcher M. P., Diggle S. P., Cámara M., Williams P.. 2007; Biosensor-based assays for PQS, HHQ and related 2-alkyl-4-quinolone quorum sensing signal molecules. Nat Protoc2:1254–1262
    [Google Scholar]
  11. Forman S., Bobrov A. G., Krillina O., Craig S. K., Abney J., Fetherston J. D., Perry R. D.. 2006; Identification of critical amino acid residues in the plague biofilm Hms proteins. Microbiology152:3399–3410
    [Google Scholar]
  12. Gallagher L. A., McKnight S. L., Kuznetsova M. S., Pesci E. C., Manoil C.. 2002; Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol184:6472–6480
    [Google Scholar]
  13. Galperin M. Y., Moroz O. V., Wilson K. S., Murzin A. G.. 2006; House cleaning, a part of good housekeeping. Mol Microbiol59:5–19
    [Google Scholar]
  14. Goldberg J. B.. 2000; Pseudomonas: global bacteria. Trends Microbiol8:55–57
    [Google Scholar]
  15. Hager P. W., Calfee M. W., Phibbs P. V.. 2000; The Pseudomonas aeruginosa devB/ SOL homolog, pgl, is a member of the hex regulon and encodes 6-phosphogluconolactonase. J Bacteriol182:3934–3941
    [Google Scholar]
  16. Hanahan D.. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580
    [Google Scholar]
  17. Hentzer M., Riedel K., Rasmussen T. B., Heydorn A., Andersen J. B., Parsek M. R., Rice S. A., Eberl L., Molin S.. other authors 2002; Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology148:87–102
    [Google Scholar]
  18. Hentzer M., Wu H., Andersen J. B., Riedel K., Rasmussen T. B., Bagge N., Kumar N., Schembri M. A., Song Z.. other authors 2003; Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J22:3803–3815
    [Google Scholar]
  19. Hucho F., Wallenfels K.. 1972; Glucono- δ-lactonase from Escherichia coli. Biochim Biophys Acta276:176–179
    [Google Scholar]
  20. Jones T. A., Zou J. Y., Cowan S. W., Kjeldgaard M.. 1991; Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta Crystallogr A47:110–119
    [Google Scholar]
  21. Juhas M., Wiehlmann L., Huber B., Jordan D., Lauber J., Salunkhe P., Limpert A. S., von Götz F., Steinmetz I.. other authors 2004; Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. Microbiology150:831–841
    [Google Scholar]
  22. Kajander T., Merckel M. C., Thompson A., Deacon A. M., Mazur P., Kozarich J. W., Goldman A.. 2002; The structure of Neurospora crassa 3-carboxy- cis, cis-muconate lactonizing enzyme, a β propeller cycloisomerase. Structure10:483–492
    [Google Scholar]
  23. King E. O., Ward M. K., Raney D. E.. 1954; Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med44:301–307
    [Google Scholar]
  24. Kovach M. E., Phillips W., Elzer P. H., Roop R. M., Peterson K. M.. 1994; pBBR1MCS: a broad-host-range cloning vector. Biotechniques16:800–801
    [Google Scholar]
  25. Kupor S. R., Fraenkel D. G.. 1969; 6-Phosphogluconolactonase mutants of Escherichia coli and a maltose blue gene. J Bacteriol100:1296–1301
    [Google Scholar]
  26. Lassmann T., Sonnhammer E. L.. 2006; Kalign, Kalignvu and Mumsa: web servers for multiple sequence alignment. Nucleic Acids Res34:W596–W599
    [Google Scholar]
  27. Lewenza S., Gardy G. L., Brinkman F. S., Hancock R. E.. 2005; Genome-wide identification of Pseudomonas aeruginosa exported proteins using a consensus computational strategy combined with a laboratory-based PhoA fusion screen. Genome Res15:321–329
    [Google Scholar]
  28. Mavrodi D. V., Bonsall R. F., Delaney S. M., Soule M. J., Phillips G., Thomashow L. S.. 2001; Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol183:6454–6465
    [Google Scholar]
  29. Mazur P., Henzel W. J., Mattoo S., Kozarich W. J.. 1994; 3-Carboxy- cis, cis-muconate lactonizing enzyme from Neurospora crassa: an alternate cycloisomerase motif. J Bacteriol176:1718–1728
    [Google Scholar]
  30. McClean K. H., Winson M. K., Fish L., Taylor A., Chhabra S. R., Cámara M., Daykin M., Lamb J. H., Swift S.. other authors 1997; Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology143:3703–3711
    [Google Scholar]
  31. Meyer J. M., Abdallah M. A.. 1978; The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. J Gen Microbiol107:319–328
    [Google Scholar]
  32. Miclet E., Stoven V., Michels P. A., Opperdoes F. R., Lallemand J. Y., Duffieux F.. 2001; NMR spectroscopic analysis of the first two steps of the pentose-phosphate pathway elucidates the role of 6-phosphogluconolactonase. J Biol Chem276:34840–34846
    [Google Scholar]
  33. Milton D. L., O'Toole R., Horstedt P., Wolf-Watz H.. 1996; Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol178:1310–1319
    [Google Scholar]
  34. Mochizuki K.. 2001; Purification and characterization of a lactonase from Burkholderia sp. R-711, that hydrolyzes ( R)-5-oxo-2-tetrahydrofurancarboxylic acid. Arch Microbiol175:430–434
    [Google Scholar]
  35. Mochizuki K.. 2003; Purification and characterization of a lactonase from Erwinia cyprepedii 314B that hydolyses ( S)-5-oxo-2-tetrahydrofurancarboxylic acid. Arch Microbiol180:490–493
    [Google Scholar]
  36. Mochizuki K.. 2006; Cloning, sequencing, and heterologous expression of an Erwinia cypripedii 314B lactonase specific for l- α-hydroglutaric acid γ-lactone. Appl Microbiol Biotechnol71:863–869
    [Google Scholar]
  37. Ortori C. A., Atkinson S., Chhabra S. R., Cámara M., Williams P., Barrett D. A.. 2007; Comprehensive profiling of N-acylhomoserine lactones produced by Yersinia pseudotuberculosis using liquid chromatography coupled to hybrid quadrupole-linear ion trap mass spectrometry. Anal Bioanal Chem387:497–511
    [Google Scholar]
  38. Price-Whelan A., Dietrich L. A., Newman D. K.. 2006; Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol2:71–78
    [Google Scholar]
  39. Rychlewski L., Jaroszewski L., Li W., Godzik A.. 2000; Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci9:232–241
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P.. 2003; Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol185:2066–2079
    [Google Scholar]
  42. Simon R., Priefer U., Pühler A.. 1983; A broad host-range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology1:784–791
    [Google Scholar]
  43. Thomason L. C., Court D. L., Datta A. R., Khanna R., Rosner J. L.. 2004; Identification of the Escherichia coli K-12 ybhE gene as pgl, encoding 6-phosphogluconolactonase. J Bacteriol186:8248–8253
    [Google Scholar]
  44. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882
    [Google Scholar]
  45. Wagner V. E., Bushnell D., Passador L., Brooks A. I., Iglewski B. H.. 2003; Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol185:2080–2095
    [Google Scholar]
  46. Yum D. Y., Lee Y. P., Pan J. G.. 1997; Cloning and expression of a gene cluster encoding three subunits of membrane-bound gluconate dehydrogenase from Erwinia cypripedii ATCC 29267 in Escherichia coli. J Bacteriol179:6566–6572
    [Google Scholar]
  47. Zimenkov D., Gulevich A., Skorokhodova A., Biriukova I., Kozlov Y., Mashko S.. 2005; Escherichia coli ORF ybhE is pgl gene encoding 6-phosphogluconolactonase (EC 3.1.1.31) that has no homology with known 6PGLs from other organisms. FEMS Microbiol Lett244:275–280
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018465-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018465-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error