1887

Abstract

The toxin complex (Tc) genes were first identified in the insect pathogen and encode ∼1 MDa protein complexes which are toxic to insect pests. Subsequent genome sequencing projects have revealed the presence of orthologues in a range of bacterial pathogens known to be associated with insects. Interestingly, members of the mammalian-pathogenic yersiniae have also been shown to encode Tc orthologues. Studies in have shown that divergent loci either encode insect-active toxins or play a role in colonization of the gut in gastroenteritis models of rats. So far little is known about the activity of the Tc proteins in the other mammalian-pathogenic yersiniae. Here we present work to suggest that Tc proteins in and are not insecticidal toxins but have evolved for mammalian pathogenicity. We show that Tc is secreted by strain IP32953 during growth in media at 28 °C and 37 °C. We also demonstrate that oral toxicity of strain IP32953 to larvae is not due to Tc expression and that lysates of BL21 expressing the Tc proteins are not toxic to insect cells but are toxic to cultured mammalian cell lines. Cell lysates of BL21 expressing the Tc proteins caused actin ruffles, vacuoles and multi-nucleation in cultured human gut cells (Caco-2); similar morphology was observed after application of a lysate of BL21 expressing the Tc proteins to mouse fibroblast NIH3T3 cells, but not Caco-2 cells. Finally, transient expression of the individual Tc proteins in Caco-2 and NIH3T3 cell lines reproduced the actin and nuclear rearrangement observed with the topical applications. Together these results add weight to the growing hypothesis that the Tc proteins in and have been adapted for mammalian pathogenicity. We further conclude that Tc proteins from and display differential mammalian cell specificity in their toxicity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018440-0
2008-11-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/11/3503.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018440-0&mimeType=html&fmt=ahah

References

  1. Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A. & Carniel, E. ( 1999; ). Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 96, 14043–14048.[CrossRef]
    [Google Scholar]
  2. Blackburn, M., Golubeva, E., Bowen, D. & ffrench-Constant, R. H. ( 1998; ). A novel insecticidal toxin from Photorhabdus luminescens: histopathological effects of toxin complex A (Tca) on the midgut of Manduca sexta. Appl Environ Microbiol 64, 3036–3041.
    [Google Scholar]
  3. Boquet, P. ( 2001; ). The cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. Toxicon 39, 1673–1680.[CrossRef]
    [Google Scholar]
  4. Bowen, D. J. & Ensign, J. C. ( 1998; ). Purification and characterization of a high molecular weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Appl Environ Microbiol 64, 3029–3035.
    [Google Scholar]
  5. Bowen, D., Rocheleau, T. A., Blackburn, M., Andreev, O., Golubeva, E., Bhartia, R. & ffrench-Constant, R. H. ( 1998; ). Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280, 2129–2132.[CrossRef]
    [Google Scholar]
  6. Bresolin, G., Morgan, J. A., Ilgen, D., Scherer, S. & Fuchs, T. M. ( 2006a; ). Low temperature-induced insecticidal activity of Yersinia enterocolitica. Mol Microbiol 59, 503–512.[CrossRef]
    [Google Scholar]
  7. Bresolin, G., Neuhaus, K., Scherer, S. & Fuchs, T. M. ( 2006b; ). Transcriptional analysis of long-term adaptation of Yersinia enterocolitica to low-temperature growth. J Bacteriol 188, 2945–2958.[CrossRef]
    [Google Scholar]
  8. Caprioli, A., Falbo, V., Roda, L. G., Ruggeri, F. M. & Zona, C. ( 1983; ). Partial purification and characterization of an Escherichia coli toxic factor that induces morphological cell alterations. Infect Immun 39, 1300–1306.
    [Google Scholar]
  9. Chain, P. S., Carniel, E., Larimer, F. W., Lamerdin, J., Stoutland, P. O., Regala, W. M., Georgescu, A. M., Vergez, L. M., Land, M. L. & other authors ( 2004; ). Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 101, 13826–13831.[CrossRef]
    [Google Scholar]
  10. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  11. Deng, W., Burland, V., Plunkett, G., III, Boutin, A., Mayhew, G. F., Liss, P., Perna, N. T., Rose, D. J., Mau, B. & other authors ( 2002; ). Genome sequence of Yersinia pestis KIM. J Bacteriol 184, 4601–4611.[CrossRef]
    [Google Scholar]
  12. Enright, M. R. & Griffin, C. T. ( 2005; ). Effects of Paenibacillus on the entomopathogenic nematode Heterorhabditis megidis. J Invertebr Pathol 88, 40–48.[CrossRef]
    [Google Scholar]
  13. Erickson, D. L., Jarrett, C. O., Wren, B. W. & Hinnebusch, B. J. ( 2006; ). Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. J Bacteriol 188, 1113–1119.[CrossRef]
    [Google Scholar]
  14. Erickson, D. L., Waterfield, N. R., Vadyvaloo, V., Long, D., Fischer, E. R., ffrench-Constant, R. & Hinnebusch, B. J. ( 2007; ). Acute oral toxicity of Yersinia pseudotuberculosis to fleas: implications for the evolution of vector-borne transmission of plague. Cell Microbiol 9, 2658–2666.[CrossRef]
    [Google Scholar]
  15. Fabbri, A., Falzano, L., Travaglione, S., Stringaro, A., Malorni, W., Fais, S. & Fiorentini, C. ( 2002; ). Rho-activating Escherichia coli cytotoxic necrotizing factor 1: macropinocytosis of apoptotic bodies in human epithelial cells. Int J Med Microbiol 291, 551–554.
    [Google Scholar]
  16. Falzano, L., Fiorentini, C., Boquet, P. & Donelli, G. ( 1993; ). Interaction of Escherichia coli cytotoxic necrotizing factor type 1 (CNF1) with cultured cells. Cytotechnology 11 (Suppl. 1), S56–S58.[CrossRef]
    [Google Scholar]
  17. ffrench-Constant, R. & Waterfield, N. ( 2006; ). An ABC guide to the bacterial toxin complexes. Adv Appl Microbiol 58, 169–183.
    [Google Scholar]
  18. Fiorentini, C., Arancia, G., Caprioli, A., Falbo, V., Ruggeri, F. M. & Donelli, G. ( 1988; ). Cytoskeletal changes induced in HEp-2 cells by the cytotoxic necrotizing factor of Escherichia coli. Toxicon 26, 1047–1056.[CrossRef]
    [Google Scholar]
  19. Fiorentini, C., Fabbri, A., Matarrese, P., Falzano, L., Boquet, P. & Malorni, W. ( 1997; ). Hindrance of apoptosis and phagocytic behaviour induced by Escherichia coli cytotoxic necrotizing factor 1: two related activities in epithelial cells. Biochem Biophys Res Commun 241, 341–346.[CrossRef]
    [Google Scholar]
  20. Fogh, J., Wright, W. C. & Loveless, J. D. ( 1977; ). Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J Natl Cancer Inst 58, 209–214.
    [Google Scholar]
  21. Gendlina, I., Held, K. G., Schesser Bartra, S., Gallis, B. M., Doneanu, C. E., Goodlett, D. R., Plano, G. V. & Collins, C. M. ( 2007; ). Identification and type III dependent secretion of the Yersinia pestis insecticidal-like proteins. Mol Microbiol 64, 1214–1227.[CrossRef]
    [Google Scholar]
  22. Guzman, L.-M., Belin, D., Carson, M. J. & Beckwith, J. ( 1995; ). Tight regulation, modulation and high level expression by vectors containing the arabinose pBAD promoter. J Bacteriol 177, 4121–4130.
    [Google Scholar]
  23. Hinchliffe, S. J., Isherwood, K. E., Stabler, R. A., Prentice, M. B., Rakin, A., Nichols, R. A., Oyston, P. C., Hinds, J., Titball, R. W. & Wren, B. W. ( 2003; ). Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis. Genome Res 13, 2018–2029.[CrossRef]
    [Google Scholar]
  24. Hinnebusch, B. J., Rudolph, A. E., Cherepanov, P., Dixon, J. E., Schwan, T. G. & Forsberg, A. ( 2002; ). Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296, 733–735.[CrossRef]
    [Google Scholar]
  25. Hurst, M. R., Glare, T. R., Jackson, T. A. & Ronson, C. W. ( 2000; ). Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J Bacteriol 182, 5127–5138.[CrossRef]
    [Google Scholar]
  26. Hurst, M. R., Jones, S. M., Tan, B. & Jackson, T. A. ( 2007; ). Induced expression of the Serratia entomophila Sep proteins shows activity towards the larvae of the New Zealand grass grub Costelytra zealandica. FEMS Microbiol Lett 275, 160–167.[CrossRef]
    [Google Scholar]
  27. Liu, D., Burton, S., Glancy, T., Li, Z. S., Hampton, R., Meade, T. & Merlo, D. J. ( 2003; ). Insect resistance conferred by 283-kDa Photorhabdus luminescens protein TcdA in Arabidopsis thaliana. Nat Biotechnol 21, 1222–1228.[CrossRef]
    [Google Scholar]
  28. Maxson, M. E. & Darwin, A. J. ( 2004; ). Identification of inducers of the Yersinia enterocolitica phage shock protein system and comparison to the regulation of the RpoE and Cpx extracytoplasmic stress responses. J Bacteriol 186, 4199–4208.[CrossRef]
    [Google Scholar]
  29. Papini, E., de Bernard, M., Milia, E., Bugnoli, M., Zerial, M., Rappuoli, R. & Montecucco, C. ( 1994; ). Cellular vacuoles induced by Helicobacter pylori originate from late endosomal compartments. Proc Natl Acad Sci U S A 91, 9720–9724.[CrossRef]
    [Google Scholar]
  30. Parkhill, J., Wren, B. W., Thomson, N. R., Titball, R. W., Holden, M. T., Prentice, M. B., Sebaihia, M., James, K. D., Churcher, C. & other authors ( 2001; ). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527.[CrossRef]
    [Google Scholar]
  31. Riley, G. & Toma, S. ( 1989; ). Detection of pathogenic Yersinia enterocolitica by using congo red-magnesium oxalate agar medium. J Clin Microbiol 27, 213–214.
    [Google Scholar]
  32. Sergeant, M., Jarrett, P., Ousley, M. & Morgan, J. A. ( 2003; ). Interactions of insecticidal toxin gene products from Xenorhabdus nematophilus PMFI296. Appl Environ Microbiol 69, 3344–3349.[CrossRef]
    [Google Scholar]
  33. Silva, C. P., Waterfield, N. R., Daborn, P. J., Dean, P., Chilver, T., Au, C. P., Sharma, S., Potter, U., Reynolds, S. E. & ffrench-Constant, R. H. ( 2002; ). Bacterial infection of a model insect: Photorhabdus luminescens and Manduca sexta. Cell Microbiol 4, 329–339.[CrossRef]
    [Google Scholar]
  34. Song, Y., Tong, Z., Wang, J., Wang, L., Guo, Z., Han, Y., Zhang, J., Pei, D., Zhou, D. & other authors ( 2004; ). Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans. DNA Res 11, 179–197.[CrossRef]
    [Google Scholar]
  35. Taylor, L. A. & Rose, R. E. ( 1988; ). A correction in the nucleotide sequence of the Tn903 kanamycin resistance determinant in pUC4K. Nucleic Acids Res 16, 358 [CrossRef]
    [Google Scholar]
  36. Tennant, S. M., Skinner, N. A., Joe, A. & Robins-Browne, R. M. ( 2005; ). Homologues of insecticidal toxin complex genes in Yersinia enterocolitica biotype 1A and their contribution to virulence. Infect Immun 73, 6860–6867.[CrossRef]
    [Google Scholar]
  37. Waterfield, N., Dowling, A., Sharma, S., Daborn, P. J., Potter, U. & ffrench-Constant, R. H. ( 2001a; ). Oral toxicity of Photorhabdus luminescens W14 toxin complexes in Escherichia coli. Appl Environ Microbiol 67, 5017–5024.[CrossRef]
    [Google Scholar]
  38. Waterfield, N. R., Bowen, D. J., Fetherston, J. D., Perry, R. D. & ffrench-Constant, R. H. ( 2001b; ). The tc genes of Photorhabdus: a growing family. Trends Microbiol 9, 185–191.[CrossRef]
    [Google Scholar]
  39. Waterfield, N. R., Wren, B. W. & Ffrench-Constant, R. H. ( 2004; ). Invertebrates as a source of emerging human pathogens. Nat Rev Microbiol 2, 833–841.[CrossRef]
    [Google Scholar]
  40. Waterfield, N., Hares, M., Dowling, A. & ffrench-Constant, R. ( 2005; ). Potentiation and cellular phenotypes of the insecticidal toxin complexes of Photorhabdus bacteria. Cell Microbiol 7, 373–382.[CrossRef]
    [Google Scholar]
  41. Waterfield, N., Hares, M., Hinchliffe, S., Wren, B. & ffrench-Constant, R. ( 2007; ). The insect toxin complex of Yersinia. Adv Exp Med Biol 603, 247–257.
    [Google Scholar]
  42. Wren, B. W. ( 2003; ). The yersiniae – a model genus to study the rapid evolution of bacterial pathogens. Nat Rev Microbiol 1, 55–64.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018440-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018440-0
Loading

Data & Media loading...

Supplements

Protein sequence alignments (PDFs, ~20 kb) of Tc proteins TcaA(a), TcaB(b) and TcaC(c) of strains and KIM10 using CLUSTAL W (SDSC Biology Workbench). Sequences are labelled as follows: * (bright blue), single, fully conserved residue; : (green), conservation of strong groups; . (dark blue), conservation of weak groups; space, no consensus. GenBank submission numbers are as follows: YPIII pIB1 TcaA, EF462902; YPIII pIB1 TcaB, EF462903; YPIII pIB1 TcaC, EF462904; 83 TcaA, EF462905; 83 TcaC (partial), EF462906; Pa3423 TcaA, EF462907; Pa3423 TcaB, EF462908; 197 TcaA, EF462911; 197 TcaB, EF462912; 141 TcaA (partial), EF462909; 354 TcaA, EF462910.

PDF

Protein sequence alignments (PDFs, ~20 kb) of Tc proteins TcaA(a), TcaB(b) and TcaC(c) of strains and KIM10 using CLUSTAL W (SDSC Biology Workbench). Sequences are labelled as follows: * (bright blue), single, fully conserved residue; : (green), conservation of strong groups; . (dark blue), conservation of weak groups; space, no consensus. GenBank submission numbers are as follows: YPIII pIB1 TcaA, EF462902; YPIII pIB1 TcaB, EF462903; YPIII pIB1 TcaC, EF462904; 83 TcaA, EF462905; 83 TcaC (partial), EF462906; Pa3423 TcaA, EF462907; Pa3423 TcaB, EF462908; 197 TcaA, EF462911; 197 TcaB, EF462912; 141 TcaA (partial), EF462909; 354 TcaA, EF462910.

PDF

Protein sequence alignments (PDFs, ~20 kb) of Tc proteins TcaA(a), TcaB(b) and TcaC(c) of strains and KIM10 using CLUSTAL W (SDSC Biology Workbench). Sequences are labelled as follows: * (bright blue), single, fully conserved residue; : (green), conservation of strong groups; . (dark blue), conservation of weak groups; space, no consensus. GenBank submission numbers are as follows: YPIII pIB1 TcaA, EF462902; YPIII pIB1 TcaB, EF462903; YPIII pIB1 TcaC, EF462904; 83 TcaA, EF462905; 83 TcaC (partial), EF462906; Pa3423 TcaA, EF462907; Pa3423 TcaB, EF462908; 197 TcaA, EF462911; 197 TcaB, EF462912; 141 TcaA (partial), EF462909; 354 TcaA, EF462910.

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error