1887

Abstract

PrfA is the major transcriptional activator of most virulence genes of . Its activity is modulated by a variety of culture conditions. Here, we studied the PrfA activity in the wild-type strain EGD and an isogenic deletion mutant (EGDΔ) carrying multiple copies of the wild-type or the mutant gene (strains EGDΔpPrfA and EGDΔpPrfA*) in response to growth in brain heart infusion (BHI), Luria–Bertani broth (LB) or a defined minimal medium (MM) supplemented with one of the three phosphotransferase system (PTS) carbohydrates, glucose, mannose and cellobiose, or the non-PTS carbon source glycerol. Low PrfA activity was observed in the wild-type strain in BHI and LB with all of these carbon sources, while PrfA activity was high in minimal medium in the presence of glycerol. EGDΔpPrfA*, expressing a large amount of PrfA* protein, showed high PrfA activity under all growth conditions. In contrast, strain EGDΔpPrfA, expressing an equally high amount of PrfA protein, showed high PrfA activity only when cultured in BHI, and not in LB or MM (in the presence of any of the carbon sources). A mutant (lacking a functional HPr) was able to grow in BHI but not in LB or MM, regardless of which of the four carbon sources was added, suggesting that in LB and MM the uptake of the used PTS carbohydrates and the catabolism of glycerol are fully dependent on the functional common PTS pathway. The BHI culture medium, in contrast, apparently contains carbon sources (supporting listerial growth) which are taken up and metabolized by independently of the common PTS pathway. The growth rates of were strongly reduced in the presence of large amounts of PrfA (or PrfA*) protein when growing in MM, but were less reduced in LB and only slightly reduced in BHI. The expression of the genes encoding the PTS permeases of was determined in the listerial strains under the applied growth conditions. The data obtained further support the hypothesis that PrfA activity correlates with the expression level and the phosphorylation state of specific PTS permeases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018283-0
2008-12-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3856.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018283-0&mimeType=html&fmt=ahah

References

  1. Barabote R. D., Saier M. H. Jr 2005; Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol Mol Biol Rev 69:608–634
    [Google Scholar]
  2. Behari J., Youngman P. 1998; A homolog of CcpA mediates catabolite control in Listeria monocytogenes but not carbon source regulation of virulence genes. J Bacteriol 180:6316–6324
    [Google Scholar]
  3. Böckmann R., Dickneite C., Middendorf B., Goebel W., Sokolovic Z. 1996; Specific binding of the Listeria monocytogenes transcriptional regulator PrfA to target sequences requires additional factor(s) and is influenced by iron. Mol Microbiol 22:643–653
    [Google Scholar]
  4. Brehm K., Ripio M. T., Kreft J., Vazquez-Boland J. A. 1999; The bvr locus of Listeria monocytogenes mediates virulence gene repression by beta-glucosides. J Bacteriol 181:5024–5032
    [Google Scholar]
  5. Chakraborty T., Hain T., Domann E. 2000; Genome organization and the evolution of the virulence gene locus in Listeria species. Int J Med Microbiol 290:167–174
    [Google Scholar]
  6. Cossart P., Pizarro-Cerda J., Lecuit M. 2003; Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Cell Biol 13:23–31
    [Google Scholar]
  7. Dalet K., Cenatiempo Y., Cossart P., Hechard Y. 2001; A σ 54-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147:3263–3269
    [Google Scholar]
  8. Darbon E., Servant P., Poncet S., Deutscher J. 2002; Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression. Mol Microbiol 43:1039–1052
    [Google Scholar]
  9. Deutscher J., Francke C., Postma P. W. 2006; How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031
    [Google Scholar]
  10. Domann E., Wehland J., Niebuhr K., Haffner C., Leimeister-Wachter M., Chakraborty T. 1993; Detection of a prfA-independent promoter responsible for listeriolysin gene expression in mutant Listeria monocytogenes strains lacking the PrfA regulator. Infect Immun 61:3073–3075
    [Google Scholar]
  11. Dussurget O., Pizarro-Cerda J., Cossart P. 2004; Molecular determinants of Listeria monocytogenes virulence. Annu Rev Microbiol 58:587–610
    [Google Scholar]
  12. Eiting M., Hageluken G., Schubert W. D., Heinz D. W. 2005; The mutation G145S in PrfA, a key virulence regulator of Listeria monocytogenes, increases DNA-binding affinity by stabilizing the HTH motif. Mol Microbiol 56:433–446
    [Google Scholar]
  13. Ermolaeva S., Novella S., Vega Y., Ripio M. T., Scortti M., Vázquez-Boland J. A. 2004; Negative control of Listeria monocytogenes virulence genes by a diffusible autorepressor. Mol Microbiol 52:601–611
    [Google Scholar]
  14. Eylert E., Schär J., Mertins S., Stoll R., Bacher A., Goebel W., Eisenreich W. 2008; Carbon metabolism of Listeria monocytogenes growing inside macrophages. Mol Microbiol 69:1008–1017
    [Google Scholar]
  15. Freitag N. E., Rong L., Portnoy D. A. 1993; Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect Immun 61:2537–2544
    [Google Scholar]
  16. Geoffroy C., Raveneau J., Beretti J. L., Lecroisey A., Vazquez-Boland J. A., Alouf J. E., Berche P. 1991; Purification and characterization of an extracellular 29-kilodalton phospholipase C from Listeria monocytogenes . Infect Immun 59:2382–2388
    [Google Scholar]
  17. Gilbreth S. E., Benson A. K., Hutkins R. W. 2004; Catabolite repression and virulence gene expression in Listeria monocytogenes . Curr Microbiol 49:95–98
    [Google Scholar]
  18. Glaser P., Frangeul L., Buchrieser C., Rusniok C., Amend A., Baquero F., Berche P., Bloecker H., Brandt P. other authors 2001; Comparative genomics of Listeria species. Science 294:849–852
    [Google Scholar]
  19. Goebel W., Kuhn M. 2000; Bacterial replication in the host cell cytosol. Curr Opin Microbiol 3:49–53
    [Google Scholar]
  20. Goebel W., Müller-Altrock S., Kreft J. 2006; Regulation of virulence genes in pathogenic Listeria spp. In Gram-Positive Pathogens pp 499–506 Edited by Fischetti V. A., Novick R. P., Ferretti J. J., Portnoy D. A., Rood J. I. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Hamon M., Bierne H., Cossart P. 2006; Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol 4:423–434
    [Google Scholar]
  22. Herro R., Poncet S., Cossart P., Buchrieser C., Gouin E., Glaser P., Deutscher J. 2005; How seryl-phosphorylated HPr inhibits PrfA, a transcription activator of Listeria monocytogenes virulence genes. J Mol Microbiol Biotechnol 9:224–234
    [Google Scholar]
  23. Joseph B., Przybilla K., Stühler C., Schauer K., Slaghuis J., Fuchs T. M., Goebel W. 2006; Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J Bacteriol 188:556–568
    [Google Scholar]
  24. Joseph B., Mertins S., Stoll R., Schär J., Umesha K. R., Luo Q., Müller-Altrock S., Goebel W. 2008; Glycerol-metabolism and PrfA activity in Listeria monocytogenes . J Bacteriol 190:5412–5430
    [Google Scholar]
  25. Kreft J., Vázquez-Boland J. A. 2001; Regulation of virulence genes in Listeria . Int J Med Microbiol 291:145–157
    [Google Scholar]
  26. Kreft J., Vázquez-Boland J. A., Altrock S., Domínguez-Bernal G., Goebel W. 2002; Pathogenicity islands and other virulence elements in Listeria . Curr Top Microbiol Immunol 264:109–125
    [Google Scholar]
  27. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  28. Lalic-Mülthaler M., Bohne J., Goebel W. 2001; In vitro transcription of PrfA-dependent and -independent genes of Listeria monocytogenes . Mol Microbiol 42:111–120
    [Google Scholar]
  29. Lampidis R., Gross R., Sokolovic Z., Goebel W., Kreft J. 1994; The virulence regulator protein of Listeria ivanovii is highly homologous to PrfA from Listeria monocytogenes and both belong to the Crp-Fnr family of transcription regulators. Mol Microbiol 13:141–151
    [Google Scholar]
  30. Leimeister-Wächter M., Haffner C., Domann E., Goebel W., Chakraborty T. 1990; Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of Listeria monocytogenes . Proc Natl Acad Sci U S A 87:8336–8340
    [Google Scholar]
  31. Lorber B. 1997; Listeriosis. Clin Infect Dis 24:1–9
    [Google Scholar]
  32. Luo Q., Rauch M., Marr A. K., Müller-Altrock S., Goebel W. 2004; In vitro transcription of the Listeria monocytogenes virulence genes inlC and mpl reveals overlapping PrfA-dependent and -independent promoters that are differentially activated by GTP. Mol Microbiol 52:39–52
    [Google Scholar]
  33. Luo Q., Herler M., Müller-Altrock S., Goebel W. 2005; Supportive and inhibitory elements of a putative PrfA-dependent promoter in Listeria monocytogenes . Mol Microbiol 55:986–997
    [Google Scholar]
  34. Marr A. K., Joseph B., Mertins S., Ecke R., Müller-Altrock S., Goebel W. 2006; Overexpression of PrfA leads to growth inhibition of Listeria monocytogenes in glucose-containing culture media by interfering with glucose uptake. J Bacteriol 188:3887–3901
    [Google Scholar]
  35. Mauder N., Ecke R., Mertins S., Loeffler D. I., Seidel G., Sprehe M., Hillen W., Goebel W., Müller-Altrock S. 2006; Species-specific differences in the activity of PrfA, the key regulator of listerial virulence genes. J Bacteriol 188:7941–7956
    [Google Scholar]
  36. Mengaud J., Dramsi S., Gouin E., Vázquez-Boland J. A., Milon G., Cossart P. 1991; Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol Microbiol 5:2273–2283
    [Google Scholar]
  37. Mertins S., Joseph B., Goetz M., Ecke R., Seidel G., Sprehe M., Hillen W., Goebel W., Müller-Altrock S. 2007; Interference of components of the phosphoenolpyruvate phosphotransferase system with the central virulence gene regulator PrfA of Listeria monocytogenes . J Bacteriol 189:473–490
    [Google Scholar]
  38. Milenbachs A. A., Brown D. P., Moors M., Youngman P. 1997; Carbon-source regulation of virulence gene expression in Listeria monocytogenes . Mol Microbiol 23:1075–1085
    [Google Scholar]
  39. Milohanic E., Glaser P., Coppée J. Y., Frangeul L., Vega Y., Vázquez-Boland J. A., Kunst F., Cossart P., Buchrieser C. 2003; Transcriptome analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol 47:1613–1625
    [Google Scholar]
  40. Mueller K. J., Freitag N. E. 2005; Pleiotropic enhancement of bacterial pathogenesis resulting from the constitutive activation of the Listeria monocytogenes regulatory factor PrfA. Infect Immun 73:1917–1926
    [Google Scholar]
  41. Nam T. W., Cho S. H., Shin D., Kim J. H., Jeong J. Y., Lee J. H., Roe J. H., Peterkofsky A., Kang S. O. other authors 2001; The Escherichia coli glucose transporter enzyme IICB(Glc) recruits the global repressor Mlc. EMBO J 20:491–498
    [Google Scholar]
  42. Nguyen T. X., Yen M. R., Barabote R. D., Saier M. H. Jr 2006; Topological predictions for integral membrane permeases of the phosphoenolpyruvate : sugar phosphotransferase system. J Mol Microbiol Biotechnol 11:345–360
    [Google Scholar]
  43. Parker C., Hutkins R. W. 1997; Listeria monocytogenes Scott A transports glucose by high-affinity and low-affinity glucose transport systems. Appl Environ Microbiol 63:543–546
    [Google Scholar]
  44. Postma P. W., Lengeler J. W., Jacobson G. R. 1993; Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594
    [Google Scholar]
  45. Premaratne R. J., Lin W. J., Johnson E. A. 1991; Development of an improved chemically defined minimal medium for Listeria monocytogenes . Appl Environ Microbiol 57:3046–3048
    [Google Scholar]
  46. Rauch M. 2003; In vitro Transkription von Virulenzgenen aus Listeria monocytogenes unter der Kontrolle des Transkriptionsregulators PrfA. In Lehrstuhl für Mikrobiologie pp 128 Würzburg: Bayerische Julius-Maximilians-Universität Würzburg;
    [Google Scholar]
  47. Renzoni A., Cossart P., Dramsi S. 1999; PrfA, the transcriptional activator of virulence genes, is upregulated during interaction of Listeria monocytogenes with mammalian cells and in eukaryotic cell extracts. Mol Microbiol 34:552–561
    [Google Scholar]
  48. Ripio M. T., Domínguez-Bernal G., Suárez M., Brehm K., Berche P., Vázquez-Boland J. A. 1996; Transcriptional activation of virulence genes in wild-type strains of Listeria monocytogenes in response to a change in the extracellular medium composition. Res Microbiol 147:371–384
    [Google Scholar]
  49. Ripio M. T., Domínguez-Bernal G., Lara M., Suárez M., Vázquez-Boland J. A. 1997; A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes . J Bacteriol 179:1533–1540
    [Google Scholar]
  50. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Sheehan B., Klarsfeld A., Msadek T., Cossart P. 1995; Differential activation of virulence gene expression by PrfA, the Listeria monocytogenes virulence regulator. J Bacteriol 177:6469–6476
    [Google Scholar]
  52. Shetron-Rama L. M., Mueller K., Bravo J. M., Bouwer H. G., Way S. S., Freitag N. E. 2003; Isolation of Listeria monocytogenes mutants with high-level in vitro expression of host cytosol-induced gene products. Mol Microbiol 48:1537–1551
    [Google Scholar]
  53. Sue D., Fink D., Wiedmann M., Boor K. J. 2004; σ B-dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. Microbiology 150:3843–3855
    [Google Scholar]
  54. Tsai H. N., Hodgson D. A. 2003; Development of a synthetic minimal medium for Listeria monocytogenes . Appl Environ Microbiol 69:6943–6945
    [Google Scholar]
  55. Tusher V. G., Tibshirani R., Chu G. 2001; Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116–5121
    [Google Scholar]
  56. Vadeboncoeur C., Frenette M., Lortie L. A. 2000; Regulation of the pts operon in low G+C Gram-positive bacteria. J Mol Microbiol Biotechnol 2:483–490
    [Google Scholar]
  57. Vázquez-Boland J. A., Kuhn M., Berche P., Chakraborty T., Domínguez-Bernal G., Goebel W., González-Zorn B., Wehland J., Kreft J. 2001; Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640
    [Google Scholar]
  58. Vega Y., Dickneite C., Ripio M. T., Böckmann R., González-Zorn B., Novella S., Domínguez-Bernal G., Goebel W., Vázquez-Boland J. A. 1998; Functional similarities between the Listeria monocytogenes virulence regulator PrfA and cyclic AMP receptor protein: the PrfA* (Gly145Ser) mutation increases binding affinity for target DNA. J Bacteriol 180:6655–6660
    [Google Scholar]
  59. Vega Y., Rauch M., Banfield M. J., Ermolaeva S., Scortti M., Goebel W., Vázquez-Boland J. A. 2004; New Listeria monocytogenes prfA* mutants, transcriptional properties of PrfA* proteins and structure–function of the virulence regulator PrfA. Mol Microbiol 52:1553–1565
    [Google Scholar]
  60. Wong K. K., Freitag N. E. 2004; A novel mutation within the central Listeria monocytogenes regulator PrfA that results in constitutive expression of virulence gene products. J Bacteriol 186:6265–6276
    [Google Scholar]
  61. Xue J., Miller K. W. 2007; Regulation of the mpt operon in Listeria innocua by the ManR protein. Appl Environ Microbiol 73:5648–5652
    [Google Scholar]
  62. Yang Y. H., Dudoit S., Luu P., Lin D. M., Peng V., Ngai J., Speed T. P. 2002; Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res 30:e15
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018283-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018283-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error