1887

Abstract

susbp. is a capnophilic Gram-positive heterotroph with optimal growth in 4 % CO-enriched air. At low inorganic carbon (C) concentrations, the genes encoding the enzymes of the pyrimidine biosynthetic pathway were overexpressed, in agreement with a previous study showing that these genes are regulated at the transcription level in response to C via a PyrR-mediated mechanism. A previous study of high-CO-requiring (HCR) mutants revealed an unknown genetic link between arginine regulation and C-dependent nutritional needs. To better understand 's adaptation to C availability, additional C-responsive genes were sought in the arginine biosynthetic pathway ( and genes) using slot-blot hybridization and a proteomic differential 2D gel electrophoresis (DIGE) global approach. Besides the nine -encoded proteins, 16 new Icr (inorganic-carbon-regulated) proteins accumulated differentially in response to C availability, suggesting that the C response involves several metabolic pathways and adaptation processes. Among these Icr proteins only argininosuccinate lyase, encoded by , was involved in arginine biosynthesis. Three proteins involved in the purine biosynthetic pathway and nucleotide conversion, adenylate kinase (Adk), GMP synthase (GuaA), and IMP dehydrogenase (GuaB), accumulated differentially in response to changes in C levels. Expression of the Icr protein-encoding genes and was regulated at the transcription level or by RNA stability in response to C availability, as previously demonstrated for the genes. However, PyrR was not essential for the C-regulated transcription of and , demonstrating that PyrR modulates only a subset of C-regulated genes. These results suggest that the C response may involve at least two regulatory mechanisms in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018184-0
2008-09-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/9/2629.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018184-0&mimeType=html&fmt=ahah

References

  1. Arsène-Ploetze, F. & Bringel, F. ( 2004; ). Role of inorganic carbon on lactic acid bacteria metabolism. Lait 84, 45–59.
    [Google Scholar]
  2. Arsène-Ploetze, F., Kugler, V., Martinussen, J. & Bringel, F. ( 2006a; ). The expression of the pyr operon of Lactobacillus plantarum is regulated by inorganic carbon availability through a second regulator PyrR2 homologous to the pyrimidine dependent regulator PyrR1. J Bacteriol 188, 8607–8616.[CrossRef]
    [Google Scholar]
  3. Arsène-Ploetze, F., Nicoloff, H., Kammerer, B., Martinussen, J. & Bringel, F. ( 2006b; ). Uracil salvage pathway in Lactobacillus plantarum: transcription and genetic studies. J Bacteriol 188, 4777–4786.[CrossRef]
    [Google Scholar]
  4. Barrick, J. E., Corbino, K. A., Winkler, W. C., Nahvi, A., Mandal, M., Collins, J., Lee, M., Roth, A., Sudarsan, N. & other authors ( 2004; ). New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc Natl Acad Sci U S A 101, 6421–6426.[CrossRef]
    [Google Scholar]
  5. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  6. Bringel, F. & Hubert, J. C. ( 2003; ). Extent of genetic lesions of the arginine and pyrimidine biosynthetic pathways in Lactobacillus plantarum, L. paraplantarum, L. pentosus and L. casei: prevalence of CO2 dependent auxotrophs and characterization of deficient arg genes in L. plantarum. Appl Environ Microbiol 69, 2674–2683.[CrossRef]
    [Google Scholar]
  7. Bringel, F., Frey, L., Boivin, S. & Hubert, J. C. ( 1997; ). Arginine biosynthesis and regulation in Lactobacillus plantarum: the carA gene and the argCJBDF cluster are divergently transcribed. J Bacteriol 179, 2697–2706.
    [Google Scholar]
  8. Bringel, F., Vuilleumier, S. & Arsène-Ploetze, F. ( 2008; ). Low carbamoyl phosphate pools may drive Lactobacillus plantarum CO2-dependent growth phenotype. J Mol Microbiol Biotechnol 14, 22–30.[CrossRef]
    [Google Scholar]
  9. Bron, P. A., Molenaar, D., de Vos, W. M. & Kleerebezem, M. ( 2006; ). DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum. J Appl Microbiol 100, 728–738.[CrossRef]
    [Google Scholar]
  10. Cohen, D. P., Renes, J., Bouwman, F. G., Zoetendal, E. G., Mariman, E., de Vos, W. M. & Vaughan, E. E. ( 2006; ). Proteomic analysis of log to stationary growth phase Lactobacillus plantarum cells and a 2-DE database. Proteomics 6, 6485–6493.[CrossRef]
    [Google Scholar]
  11. Drysdale, M., Bourgogne, A. & Koehler, T. M. ( 2005; ). Transcriptional analysis of the Bacillus anthracis capsule regulators. J Bacteriol 187, 5108–5114.[CrossRef]
    [Google Scholar]
  12. Federle, M. J., McIver, K. S. & Scott, J. R. ( 1999; ). A response regulator that represses transcription of several virulence operons in the group A Streptococcus. J Bacteriol 181, 3649–3657.
    [Google Scholar]
  13. Herbert, S., Newell, S. W., Lee, C., Wieland, K. P., Dassy, B., Fournier, J. M., Wolz, C. & Doring, G. ( 2001; ). Regulation of Staphylococcus aureus type 5 and type 8 capsular polysaccharides by CO2. J Bacteriol 183, 4609–4613.[CrossRef]
    [Google Scholar]
  14. Hyde, J. A., Trzeciakowski, J. P. & Skare, J. T. ( 2007; ). Borrelia burgdorferi alters its gene expression and antigenic profile in response to CO2 levels. J Bacteriol 189, 437–445.[CrossRef]
    [Google Scholar]
  15. Kawasaki, S., Nagasaku, M., Mimura, T., Katashima, H., Ijyuin, S., Satoh, T. & Niimura, Y. ( 2007; ). Effect of CO2 on colony development by Bifidobacterium species. Appl Environ Microbiol 73, 7796–7798.[CrossRef]
    [Google Scholar]
  16. Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., Tarchini, R., Peters, S. A., Sandbrink, H. M. & other authors ( 2003; ). Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100, 1990–1995.[CrossRef]
    [Google Scholar]
  17. Koehler, T. M. ( 2002; ). Bacillus anthracis genetics and virulence gene regulation. Curr Top Microbiol Immunol 271, 143–164.
    [Google Scholar]
  18. Konings, W. N., Lolkema, J. S., Bolhuis, H., van Veen, H. W., Poolman, B. & Driessen, A. J. ( 1997; ). The role of transport processes in survival of lactic acid bacteria. Energy transduction and multidrug resistance. Antonie Van Leeuwenhoek 71, 117–128.[CrossRef]
    [Google Scholar]
  19. Kullen, M. J. & Klaenhammer, T. R. ( 1999; ). Identification of the pH-inducible, proton-translocating F1F0-ATPase (atpBEFHAGDC) operon of Lactobacillus acidophilus by differential display: gene structure, cloning and characterization. Mol Microbiol 33, 1152–1161.
    [Google Scholar]
  20. Lee, J. W., Lee, S. Y., Song, H. & Yoo, J. S. ( 2006; ). The proteome of Mannheimia succiniciproducens, a capnophilic rumen bacterium. Proteomics 6, 3550–3566.[CrossRef]
    [Google Scholar]
  21. Maligoy, M., Mercade, M., Cocaign-Bousquet, M. & Loubiere, P. ( 2008; ). Transcriptome analysis of Lactococcus lactis in coculture with Saccharomyces cerevisiae. Appl Environ Microbiol 74, 485–494.[CrossRef]
    [Google Scholar]
  22. Mandal, M., Boese, B., Barrick, J. E., Winkler, W. C. & Breaker, R. R. ( 2003; ). Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113, 577–586.[CrossRef]
    [Google Scholar]
  23. McGinn, P. J., Price, G. D., Maleszka, R. & Badger, M. R. ( 2003; ). Inorganic carbon limitation and light control the expression of transcripts related to the CO2-concentrating mechanism in the cyanobacterium Synechocystis sp. strain PCC6803. Plant Physiol 132, 218–229.[CrossRef]
    [Google Scholar]
  24. McIver, K. S. & Myles, R. L. ( 2002; ). Two DNA-binding domains of Mga are required for virulence gene activation in the group A Streptococcus. Mol Microbiol 43, 1591–1601.[CrossRef]
    [Google Scholar]
  25. Nicoloff, H., Hubert, J. C. & Bringel, F. ( 2000; ). In Lactobacillus plantarum, carbamoyl phosphate is synthesized by two carbamoyl-phosphate synthetases (CPS): carbon dioxide differentiates the arginine-repressed from the pyrimidine-regulated CPS. J Bacteriol 182, 3416–3422.[CrossRef]
    [Google Scholar]
  26. Nicoloff, H., Arsène-Ploetze, F., Malandain, C., Kleerebezem, M. & Bringel, F. ( 2004; ). Two arginine repressors regulate arginine biosynthesis in Lactobacillus plantarum. J Bacteriol 186, 6059–6069.[CrossRef]
    [Google Scholar]
  27. Nicoloff, H., Elagöz, A., Arsène-Ploetze, F., Kammerer, B., Martinussen, J. & Bringel, F. ( 2005; ). Repression of the pyr operon in Lactobacillus plantarum prevents its ability to grow at low carbon dioxide levels. J Bacteriol 187, 2093–2104.[CrossRef]
    [Google Scholar]
  28. Price, G. D., Badger, M. R., Woodger, F. J. & Long, B. M. ( 2008; ). Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59, 1441–1461.
    [Google Scholar]
  29. Soltes-Rak, E., Mulligan, M. E. & Coleman, J. R. ( 1997; ). Identification and characterization of a gene encoding a vertebrate-type carbonic anhydrase in cyanobacteria. J Bacteriol 179, 769–774.
    [Google Scholar]
  30. Stretton, S., Marshall, K. C., Dawes, I. W. & Goodman, A. E. ( 1996; ). Characterisation of carbon dioxide-inducible genes of the marine bacterium, Pseudomonas sp. S91. FEMS Microbiol Lett 140, 37–42.[CrossRef]
    [Google Scholar]
  31. Takayama, M., Ohyama, T., Igarashi, K. & Kobayashi, H. ( 1994; ). Escherichia coli cad operon functions as a supplier of carbon dioxide. Mol Microbiol 11, 913–918.[CrossRef]
    [Google Scholar]
  32. Wang, H. L., Postier, B. L. & Burnap, R. L. ( 2004; ). Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279, 5739–5751.[CrossRef]
    [Google Scholar]
  33. Wels, M., Francke, C., Kerkhoven, R., Kleerebezem, M. & Siezen, R. J. ( 2006; ). Predicting cis-acting elements of Lactobacillus plantarum by comparative genomics with different taxonomic subgroups. Nucleic Acids Res 34, 1947–1958.[CrossRef]
    [Google Scholar]
  34. Woodger, F. J., Bryant, D. A. & Price, G. D. ( 2007; ). Transcriptional regulation of the CO2-concentrating mechanism in a euryhaline, coastal marine cyanobacterium, Synechococcus sp. Strain PCC 7002: role of NdhR/CcmR. J Bacteriol 189, 3335–3347.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018184-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018184-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2629 - 2640

Differential proteomic analysis in response to C availability obtained by fluorescent labelling. On the gel presented, extracts obtained from wild-type strain CCM 1904 cultivated with low C concentration were labelled with Cy5 whereas extracts obtained from cells cultivated with high C level were labelled with Cy3. Spots that are circled shared significant differences of accumulation pattern when the two growth conditions were compared. The corresponding identified proteins were named 'Icr' (for inorganic carbon regulated) followed by a number that refers to the molecular mass. Sizes of protein markers (BenchMark Protein Ladder, Invitrogen) were incremented by 10 kDa from 10 to 220 kDa. [ PDF] (37 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error