1887

Abstract

The alternative sigma factor SigF of has been characterized in detail as a general-stress, stationary-phase sigma factor involved in the virulence of the bacterium. While a homologous gene has been annotated in the genome of the fast-growing , little experimental evidence is available on the function of this gene. Here, we demonstrate that SigF of is required for resistance to hydrogen peroxide, heat shock and acidic pH, but not for survival in human neutrophils. No difference in sensitivity to isoniazid was observed between the wild-type strain and the Δ mutant, suggesting that SigF-mediated resistance to hydrogen peroxide was via a pathway independent of KatG or AhpC. RT-PCR and 5′-RACE (rapid amplification of cDNA ends) analyses showed that of was co-transcribed with (thought to encode an anti-sigma factor for SigF) and MSMEG_1802 (unknown function) and was expressed from two promoters, one upstream of MSMEG_1802 and the second upstream of . Analysis of transcriptional fusion constructs in the -deletion background revealed that the MSMEG_1802 promoter was dependent on SigF for expression. Moreover, MSMEG_1802 was induced twofold upon entry into stationary phase, while exposure of exponentially growing cultures to various stress conditions (e.g. heat, cold, ethanol, hydrogen peroxide or different pH values) did not lead to induction of MSMEG_1802. Expression of was independent of SigF and remained constant throughout the growth cycle and under various stress conditions unless the bacteria were challenged with -cycloserine.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/018044-0
2008-09-01
2020-07-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/9/2786.html?itemId=/content/journal/micro/10.1099/mic.0.2008/018044-0&mimeType=html&fmt=ahah

References

  1. Agarwal N., Tyagi A. K.. 2006; Mycobacterial transcriptional signals: requirements for recognition by RNA polymerase and optimal transcriptional activity. Nucleic Acids Res34:4245–4257
    [Google Scholar]
  2. Alexeyev M. F., Shokolenko I. N., Croughan T. P.. 1995; Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene160:63–67
    [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410
    [Google Scholar]
  4. Beaucher J., Rodrigue S., Jacques P. E., Smith I., Brzezinski R., Gaudreau L.. 2002; Novel Mycobacterium tuberculosis anti-sigma factor antagonists control σ F activity by distinct mechanisms. Mol Microbiol45:1527–1540
    [Google Scholar]
  5. Betts J. C., Lukey P. T., Robb L. C., McAdam R. A., Duncan K.. 2002; Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol43:717–731
    [Google Scholar]
  6. Brown-Elliott B. A., Wallace R. J. Jr. 2002; Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin Microbiol Rev15:716–746
    [Google Scholar]
  7. Chen P., Ruiz R. E., Li Q., Silver R. F., Bishai W. R.. 2000; Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate sigma factor gene, sigF . Infect Immun68:5575–5580
    [Google Scholar]
  8. Chowdhury R. P., Gupta S., Chatterji D.. 2007; Identification and characterization of dps promoter of Mycobacterium smegmatis : promoter recognition by stress specific ECF sigma factors σ H and σ F. J Bacteriol189:8973–8981
    [Google Scholar]
  9. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S.. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544
    [Google Scholar]
  10. DeMaio J., Zhang Y., Ko C., Young D. B., Bishai W. R.. 1996; A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis . Proc Natl Acad Sci U S A93:2790–2794
    [Google Scholar]
  11. DeMaio J., Zhang Y., Ko C., Bishai W. R.. 1997; Mycobacterium tuberculosis sigF is part of a gene cluster with similarities to the Bacillus subtilis sigF and sigB operons. Tuber Lung Dis78:3–12
    [Google Scholar]
  12. Dhandayuthapani S., Zhang Y., Mudd M. H., Deretic V.. 1996; Oxidative stress response and its role in sensitivity to isoniazid in mycobacteria: characterization and inducibility of ahpC by peroxides in Mycobacterium smegmatis and lack of expression in M. aurum and M. tuberculosis . J Bacteriol178:3641–3649
    [Google Scholar]
  13. Faldt J., Dahlgren C., Ridell M.. 2002; Difference in neutrophil cytokine production induced by pathogenic and non-pathogenic mycobacteria. APMIS110:593–600
    [Google Scholar]
  14. Fernandes N. D., Wu Q. L., Kong D., Puyang X., Garg S., Husson R. N.. 1999; A mycobacterial extracytoplasmic sigma factor involved in survival following heat shock and oxidative stress. J Bacteriol181:4266–4274
    [Google Scholar]
  15. Gebhard S., Tran S. L., Cook G. M.. 2006; The Phn system of Mycobacterium smegmatis : a second high-affinity ABC-transporter for phosphate. Microbiology152:3453–3465
    [Google Scholar]
  16. Geiman D. E., Kaushal D., Ko C., Tyagi S., Manabe Y. C., Schroeder B. G., Fleischmann R. D., Morrison N. E., Converse P. J.. other authors 2004; Attenuation of late-stage disease in mice infected by the Mycobacterium tuberculosis mutant lacking the SigF alternate sigma factor and identification of SigF-dependent genes by microarray analysis. Infect Immun72:1733–1745
    [Google Scholar]
  17. Gonzalez-y-Merchand J. A., Estrada-Garcia I., Colston M. J., Cox R. A.. 1996; A novel method for the isolation of mycobacterial DNA. FEMS Microbiol Lett135:71–77
    [Google Scholar]
  18. Graham J. E., Clark-Curtiss J. E.. 1999; Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS. Proc Natl Acad Sci U S A96:11554–11559
    [Google Scholar]
  19. Hanahan D., Jessee J., Bloom F. R.. 1991; Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol204:63–113
    [Google Scholar]
  20. Heym B., Zhang Y., Poulet S., Young D., Cole S. T.. 1993; Characterization of the katG gene encoding a catalase-peroxidase required for the isoniazid susceptibility of Mycobacterium tuberculosis . J Bacteriol175:4255–4259
    [Google Scholar]
  21. Hu Y., Kendall S., Stoker N. G., Coates A. R.. 2004; The Mycobacterium tuberculosis sigJ gene controls sensitivity of the bacterium to hydrogen peroxide. FEMS Microbiol Lett237:415–423
    [Google Scholar]
  22. Karls R. K., Guarner J., McMurray D. N., Birkness K. A., Quinn F. D.. 2006; Examination of Mycobacterium tuberculosis sigma factor mutants using low-dose aerosol infection of guinea pigs suggests a role for SigC in pathogenesis. Microbiology152:1591–1600
    [Google Scholar]
  23. Lee M. H., Pascopella L., Jacobs W. R. Jr, Hatfull G. F.. 1991; Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis , and bacille Calmette-Guérin. Proc Natl Acad Sci U S A88:3111–3115
    [Google Scholar]
  24. Manganelli R., Dubnau E., Tyagi S., Kramer F. R., Smith I.. 1999; Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis . Mol Microbiol31:715–724
    [Google Scholar]
  25. Manganelli R., Proveddi R., Rodrigue S., Beaucher J., Gaudreau L., Smith I.. 2004; Sigma factors and global gene regulation in Mycobacterium tuberculosis . J Bacteriol186:895–902
    [Google Scholar]
  26. Mariani F., Cappelli G., Riccardi G., Colizzi V.. 2000; Mycobacterium tuberculosis H37Rv comparative gene-expression analysis in synthetic medium and human macrophage. Gene253:281–291
    [Google Scholar]
  27. Michele T. M., Ko C., Bishai W. R.. 1999; Exposure to antibiotics induces expression of the Mycobacterium tuberculosis sigF gene: implications for chemotherapy against mycobacterial persistors. Antimicrob Agents Chemother43:218–225
    [Google Scholar]
  28. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Pagan-Ramos E., Song J., McFalone M., Mudd M. H., Deretic V.. 1998; Oxidative stress response and characterization of the oxyR-ahpC and furA-katG loci in Mycobacterium marinum . J Bacteriol180:4856–4864
    [Google Scholar]
  30. Parida B. K., Douglas T., Nino C., Dhandayuthapani S.. 2005; Interactions of anti-sigma factor antagonists of Mycobacterium tuberculosis in the yeast two-hybrid system. Tuberculosis (Edinb85:347–355
    [Google Scholar]
  31. Pelicic V., Jackson M., Reyrat J. M., Jacobs W. R. Jr, Gicquel B., Guilhot C.. 1997; Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis . Proc Natl Acad Sci U S A94:10955–10960
    [Google Scholar]
  32. Raman S., Song T., Puyang X., Bardarov S., Jacobs W. R. Jr, Husson R. N.. 2001; The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis . J Bacteriol183:6119–6125
    [Google Scholar]
  33. Rodrigue S., Brodeur J., Jacques P. E., Gervais A. L., Brzezinski R., Gaudreau L.. 2007; Identification of mycobacterial sigma factor binding sites by chromatin immunoprecipitation assays. J Bacteriol189:1505–1513
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Singh A. K., Singh B. N.. 2008; Conservation of sigma F in mycobacteria and its expression in Mycobacterium smegmatis . Curr Microbiol56:574–580
    [Google Scholar]
  36. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr. 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis . Mol Microbiol4:1911–1919
    [Google Scholar]
  37. Timm J., Lim E. M., Gicquel B.. 1994; Escherichia coli –mycobacteria shuttle vectors for operon and gene fusions to lacZ : the pJEM series. J Bacteriol176:6749–6753
    [Google Scholar]
  38. Waagmeester A., Thompson J., Reyrat J. M.. 2005; Identifying sigma factors in Mycobacterium smegmatis by comparative genomic analysis. Trends Microbiol13:505–509
    [Google Scholar]
  39. Wallace R. J. Jr, Nash D. R., Tsukamura M., Blacklock Z. M., Silcox V. A.. 1988; Human disease due to Mycobacterium smegmatis . J Infect Dis158:52–59
    [Google Scholar]
  40. Williams E. P., Lee J. H., Bishai W. R., Colantuoni C., Karakousis P. C.. 2007; Mycobacterium tuberculosis SigF regulates genes encoding cell wall-associated proteins and directly regulates the transcriptional regulatory gene phoY1 . J Bacteriol189:4234–4242
    [Google Scholar]
  41. Winterbourn C. C., Hampton M. B., Livesey J. H., Kettle A. J.. 2006; Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J Biol Chem281:39860–39869
    [Google Scholar]
  42. Zhang Y., Heym B., Allen B., Young D., Cole S.. 1992; The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis . Nature358:591–593
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/018044-0
Loading
/content/journal/micro/10.1099/mic.0.2008/018044-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error