1887

Abstract

is a nitrogen-fixing soil bacterium that undergoes differentiation to form cysts resistant to desiccation. Upon encystment, this bacterium becomes non-motile. As in enteric bacteria, motility in occurs through the use of peritrichous flagella. , a phylogenetically close relative of , possesses a single polar flagellum. The FlhDC proteins are the master regulators of flagella and motility in enterobacteria, whereas FleQ is the master regulator in , and it is under AlgU (sigmaE) negative control. At present, nothing is known about the organization and expression of flagella genes in . Here, we identified the flagella gene cluster of this bacterium. Homologues of the master regulatory genes and are present in . Inactivation of , but not , impaired flagella biogenesis and motility. We present evidence indicating that a negative effect of the AlgU sigma factor on expression causes loss of motility in , and that CydR (a homologue of Fnr) is under AlgU control and has a negative effect on expression. Taken together, these results suggest the existence of a cascade consisting of AlgU and CydR that negatively controls expression of ; the results also suggest that the block in flagella synthesis under encystment conditions centres on repression by the AlgU–CydR cascade.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/017665-0
2008-06-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/6/1719.html?itemId=/content/journal/micro/10.1099/mic.0.2008/017665-0&mimeType=html&fmt=ahah

References

  1. Aldridge, P. & Hughes, K. T. ( 2002; ). Regulation of flagellar assembly. Curr Opin Microbiol 5, 160–165.[CrossRef]
    [Google Scholar]
  2. Alexeyev, M. F., Shokolenko, I. & Croughan, T. P. ( 1995; ). Improved antibiotic-resistance gene cassettes and omega elements for Escherichia coli vector construction and in vitro deletion/insertion mutagenesis. Gene 160, 63–67.[CrossRef]
    [Google Scholar]
  3. Arora, S. K., Ritchings, B. W., Almira, E. C., Lory, S. & Ramphal, R. ( 1997; ). A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner. J Bacteriol 179, 5574–5581.
    [Google Scholar]
  4. Bali, A., Blanco, G., Hill, S. & Kennedy, C. ( 1992; ). Excretion of ammonium by a nifL mutant of Azotobacter vinelandii fixing nitrogen. Appl Environ Microbiol 58, 1711–1718.
    [Google Scholar]
  5. Blatny, J. M., Brautaset, T., Winther-Larsen, H. C., Haugan, K. & Valla, S. ( 1997; ). Construction and use of a versatile set of broad-host-range cloning and expression vectors based on the RK2 replicon. Appl Environ Microbiol 63, 370–374.
    [Google Scholar]
  6. Campos, M.-E., Martínez-Salazar, J. M., Lloret, L., Moreno, S., Núñez, C., Espín, G. & Soberón-Chávez, G. ( 1996; ). Characterization of the gene coding for GDP-mannose dehydrogenase (algD) from Azotobacter vinelandii. J Bacteriol 178, 1793–1799.
    [Google Scholar]
  7. Clarke, M. B. & Sperandio, V. ( 2005; ). Transcriptional regulation of flhDC by QseBC and sigma (FliA) in enterohaemorragic Escherichia coli. Mol Microbiol 57, 1734–1749.[CrossRef]
    [Google Scholar]
  8. Dasgupta, N. & Ramphal, R. ( 2001; ). Interaction of the antiactivator FleN with the transcriptional activator FleQ regulates flagellar number in Pseudomonas aeruginosa. J Bacteriol 183, 6636–6644.[CrossRef]
    [Google Scholar]
  9. Dasgupta, N., Wolfgang, M. C., Goodman, A. L., Arora, S. K., Jyot, J., Lory, S. & Ramphal, R. ( 2003; ). A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Mol Microbiol 50, 809–824.[CrossRef]
    [Google Scholar]
  10. Fellay, R., Frey, J. & Krisch, H. ( 1987; ). Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis. Gene 52, 147–154.[CrossRef]
    [Google Scholar]
  11. Francez-Charlot, A., Laugel, B., Van Gemert, A., Dubarry, N., Wiorowski, F., Castanie-Cornet, M. P., Gutierrez, C. & Cam, K. ( 2003; ). RcsCDB His-Asp phosphorelay system negatively regulates the flhDC operon in Escherichia coli. Mol Microbiol 49, 823–832.
    [Google Scholar]
  12. Gaona, G., Núñez, C., Goldberg, J. B., Linford, A. N., Nájera, R., Castañeda, M., Guzmán, J., Espín, G. & Soberón-Chávez, G. ( 2004; ). Characterization of the Azotobacter vinelandii algC gene involved in alginate and lipopolysaccharide production. FEMS Microbiol Lett 238, 199–206.
    [Google Scholar]
  13. Garrett, E. S., Perlegas, D. & Wozniak, D. J. ( 1999; ). Negative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU). J Bacteriol 181, 7401–7404.
    [Google Scholar]
  14. Hedges, R. W. & Baumberg, S. ( 1973; ). Resistance to arsenic compounds conferred by a plasmid transmissible between strains of Escherichia coli. J Bacteriol 115, 459–460.
    [Google Scholar]
  15. Hitchins, V. M. & Sadoff, H. L. ( 1973; ). Sequential metabolic events during encystment in Azotobacter vinelandii. J Bacteriol 113, 1273–1279.
    [Google Scholar]
  16. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T. & Williams, S. T. ( 1994; ). Bergey's Manual of Determinative Bacteriology, 9th edn, p. 79. Baltimore: Williams & Wilkins.
  17. Jyot, J., Dasgupta, N. & Ramphal, R. ( 2002; ). FleQ, the major flagellar gene regulator in Pseudomonas aeruginosa, binds to enhancer sites located either upstream or atypically downstream of the RpoN binding site. J Bacteriol 184, 5251–5260.[CrossRef]
    [Google Scholar]
  18. Kennedy, C., Gamal, R., Hummprey, R., Ramos, J., Brigle, K. & Dean, D. ( 1986; ). The nifH, nifM, and nifN genes of Azotobacter vinelandii: characterization by Tn5 mutagenesis and isolation from pLARF1 gene banks. Mol Gen Genet 205, 318–325.[CrossRef]
    [Google Scholar]
  19. Kutsukake, K. ( 1997; ). Autogenous and global control of the flagellar master operon, flhDC, in Salmonella typhimurium. Mol Gen Genet 254, 440–448.[CrossRef]
    [Google Scholar]
  20. Kutsukake, K. & Nambu, T. ( 2000; ). Bacterial flagellum: a paradigm for biogenesis of transenvelope supramolecular structures. Recent Res Dev Microbiol 4, 607–615.
    [Google Scholar]
  21. Macnab, R. M. ( 1996; ). Flagella and motility. In Escherichia coli and Salmonella: Cellular and Molecular Biology, pp. 123–145. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  22. Martin, D. W., Schurr, M. J., Mudd, M. H., Govan, J. R., Holloway, B. W. & Deretic, V. ( 1993; ). Mechanism of conversion to mucoidy in P. aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A 90, 8377–8381.[CrossRef]
    [Google Scholar]
  23. Martínez-Salazar, J. M., Moreno, S., Nájera, R., Boucher, J. C., Espín, G., Soberón-Chávez, G. & Deretic, V. ( 1996; ). Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J Bacteriol 178, 1800–1808.
    [Google Scholar]
  24. Mathee, K., McPherson, C. J. & Ohman, D. E. ( 1997; ). Posttranslational control of the AlgT (algU)-encoded sigma22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol 179, 3711–3720.
    [Google Scholar]
  25. Mejía-Ruíz, H., Moreno, S., Guzmán, J., Nájera, R., León, R., Soberón-Chávez, G. & Espín, G. ( 1997; ). Isolation and characterization of an Azotobacter vinelandii algK mutant. FEMS Microbiol Lett 156, 101–106.[CrossRef]
    [Google Scholar]
  26. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics, pp. 431–435. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  27. Moreno, S., Nájera, R., Guzmán, J., Soberón-Chávez, G. & Espín, G. ( 1998; ). Role of alternative factor AlgU in encystment of Azotobacter vinelandii. J Bacteriol 180, 2766–2769.
    [Google Scholar]
  28. Noguez, R., Segura, D., Moreno, S., Hernandez, A., Juárez, K. & Espín, G. ( 2008; ). Enzyme INtr, Npr, and IIANtr are involved in regulation of the polyhydroxybutyrate biosynthetic genes in Azotobacter vinelandii. J Mol Microbiol Biotechnol in press
    [Google Scholar]
  29. Núñez, C., León, R., Guzmán, J., Espín, G. & Soberón-Chávez, G. ( 2000; ). Role of Azotobacter vinelandii mucA and mucC gene products in alginate production. J Bacteriol 182, 6550–6556.[CrossRef]
    [Google Scholar]
  30. Page, W. J. & Sadoff, H. L. ( 1975; ). Relationship between calcium and uronic acids in the encystment of Azotobacter vinelandii. J Bacteriol 122, 145–151.
    [Google Scholar]
  31. Page, W. J. & von Tigerstrom, M. ( 1978; ). Induction of transformation competence in Azotobacter vinelandii iron limited cultures. Can J Microbiol 24, 1590–1594.[CrossRef]
    [Google Scholar]
  32. Peralta-Gíl, M., Segura, D., Guzmán, J., Servín-Gonzalez, L. & Espín, G. ( 2002; ). Expression of the Azotobacter vinelandii poly-β-hydroxybutyrate biosynthetic phbBAC operon is driven by two overlapping promoters and is dependent on the transcriptional activator PhbR. J Bacteriol 184, 5672–5677.[CrossRef]
    [Google Scholar]
  33. Qiu, D., Eisinger, V. M., Rowen, D. W. & Yu, H. D. ( 2007; ). Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 104, 8107–8112.[CrossRef]
    [Google Scholar]
  34. Ramsey, D. M. & Wosniak, D. J. ( 2005; ). Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56, 309–322.[CrossRef]
    [Google Scholar]
  35. Rediers, H., Vanderleyden, J. & De Mot, R. ( 2004; ). Azotobacter vinelandii: a Pseudomonas in disguise? Microbiology 150, 1117–1119.[CrossRef]
    [Google Scholar]
  36. Ritchings, B. W., Almira, E. C., Lory, S. & Ramphal, R. ( 1995; ). Cloning and phenotypic characterization of fleS and fleR, new response regulators of Pseudomonas aeruginosa which regulate motility and adhesion to mucin. Infect Immun 63, 4868–4876.
    [Google Scholar]
  37. Sadoff, H. L. ( 1975; ). Encystment and germination in Azotobacter vinelandii. Bacteriol Rev 39, 516–539.
    [Google Scholar]
  38. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  39. Schurr, M. J., Yu, H., Martinez-Salazar, J. M., Boucher, J. C. & Deretic, V. ( 1996; ). Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and Pseudomonas aeruginosa conversion to mucoidy in cystic fibrosis. J Bacteriol 178, 4997–5004.
    [Google Scholar]
  40. Soutourina, O., Kolb, A., Krin, E., Laurent-Winter, C., Rimsky, S., Danchin, A. & Bertin, P. ( 1999; ). Multiple control of flagellum biosynthesis in Escherichia coli: role of H-NS protein and the cyclic AMP-catabolite activator protein complex in transcription of the flhDC master operon. J Bacteriol 181, 7500–7508.
    [Google Scholar]
  41. Tart, A. H., Wolfgang, M. C. & Wosniak, D. J. ( 2005; ). The alternative sigma factor AlgT represses Pseudomonas aeruginosa flagellum biosynthesis by inhibiting expression of fleQ. J Bacteriol 187, 7955–7962.[CrossRef]
    [Google Scholar]
  42. Tart, A. H., Blanks, M. J. & Wosniak, D. J. ( 2006; ). The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates. J Bacteriol 188, 6483–6489.[CrossRef]
    [Google Scholar]
  43. Wei, B. L., Brun-Zinkernagel, A. M., Simecka, J. W., Pruss, B. M., Babitzke, P. & Romeo, T. ( 2001; ). Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40, 245–256.[CrossRef]
    [Google Scholar]
  44. Wozniak, D. J. & Ohman, D. E. ( 1994; ). Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT. J Bacteriol 176, 6007–6014.
    [Google Scholar]
  45. Wu, G., Cruz-Ramos, H., Hill, S., Green, J., Sawers, G. & Poole, R. K. ( 2000; ). Regulation of cytochrome bd expression in the obligate aerobe Azotobacter vinelandii by CydR (Fnr). Sensitivity to oxygen species, and nitric oxide. J Biol Chem 275, 4679–4686.[CrossRef]
    [Google Scholar]
  46. Xie, Z. D., Hershberger, C. D., Shankar, S., Ye, R. W. & Chakrabarty, A. M. ( 1996; ). Sigma factor-anti-sigma factor interaction in alginate synthesis: inhibition of AlgT by MucA. J Bacteriol 178, 4990–4996.
    [Google Scholar]
  47. Yanagihara, S., Iyoda, S., Ohnishi, K., Iino, T. & Kutsukake, K. ( 1999; ). Structure and transcriptional control of the flagellar master operon of Salmonella typhimurium. Genes Genet Syst 74, 105–111.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/017665-0
Loading
/content/journal/micro/10.1099/mic.0.2008/017665-0
Loading

Data & Media loading...

Supplements

. flagellar and motility genes and percentage of identity to their closest homologs.

PDF

. Flagellar genes present (+) or absent (-) in (A.v.), (E.c.) and (P.a.).

PDF

. Consensus sequences recognized by FliA and RpoD sigma factors present upstream flagellar genes.

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error