The proper ratio of GrpE to DnaK is important for protein quality control by the DnaK–DnaJ–GrpE chaperone system and for cell division Free

Abstract

A balance of the intracellular concentrations of molecular chaperones in response to environmental conditions is of considerable importance for cellular homeostasis. Here, the physiological consequences of overexpression of GrpE in wild-type MC4100 were examined. Overexpression of GrpE resulted in defects in cell division and growth, but overexpression of GrpE-G122D, which carries the G122D point mutation resulting in impaired interaction with DnaK, did not; this indicated that the effect of GrpE overexpression could be related to the DnaK chaperone function. Phase-contrast and fluorescence micrographs suggested that the N-terminal GFP-fused GrpE was colocalized with DnaK on the surface of inclusion bodies. An luciferase-refolding activity assay using purified DnaK, DnaJ and GrpE proteins demonstrated that high concentrations of GrpE significantly inhibited DnaK-mediated refolding. Furthermore, cell-free extracts from wild-type cells and GrpE-G122D-overexpressing cells significantly enhanced the refolding of luciferase. In the GrpE-overexpressing cells, abnormal localization of the cell-division protein FtsZ was observed by indirect immunofluorescence microscopy. In conclusion, the overexpression of GrpE caused a defect in the functionality of the DnaK chaperone system; this would result in filamentous morphology via abnormalities in the cell-division machinery.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/017376-0
2008-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/7/1876.html?itemId=/content/journal/micro/10.1099/mic.0.2008/017376-0&mimeType=html&fmt=ahah

References

  1. Blum P., Ory J., Bauernfeind J., Krska J. 1992; Physiological consequence of DnaK and DnaJ overproduction in Escherichia coli. J Bacteriol 174:7436–7444
    [Google Scholar]
  2. Brehmer D., Gässler C., Rist W., Mayer M. P., Bukau B. 2004; Influence of GrpE on DnaK-substrate interactions. J Biol Chem 279:27957–27964
    [Google Scholar]
  3. Bukau B., Walker G. C. 1989; Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. J Bacteriol 171:2337–2346
    [Google Scholar]
  4. Carrio M. M., Villaverde A. 2005; Localization of chaperones DnaK and GroEL in bacterial inclusion bodies. J Bacteriol 187:3599–3601
    [Google Scholar]
  5. Dai K., Lutkenhaus J. 1992; The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J Bacteriol 174:6145–6151
    [Google Scholar]
  6. Gassler C. S., Bruchberger A., Laufen T., Mayer M. P., Schröder H., Valencia A., Bukau B. 1998; Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone. Proc Natl Acad Sci U S A 95:15229–15234
    [Google Scholar]
  7. Gelinas A. D., Langsetmo K., Toth J., Bethoney K. A., Stafford W. F., Harrison C. J. 2002; A structure-based interpretation of E. coli GrpE thermodynamic properties. J Mol Biol 323:131–142
    [Google Scholar]
  8. Grimshaw J. P., Siegenthaler R. K., Züger S., Schönfeld H. J., Z'graggen B. R., Christen P. 2005; The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK. J Mol Biol 353:888–896
    [Google Scholar]
  9. Harrison C. 2003; GrpE, a nucleotide exchange factor for DnaK. Cell Stress Chaperones 8:218–224
    [Google Scholar]
  10. Harrison C. J., Hayer-Hartl M., Liberto M. D., Hartl F. U., Kuriyan J. 1997; Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276:431–435
    [Google Scholar]
  11. Hiraga S., Ichinose C., Niki H., Yamazoe M. 1998; Cell cycle-dependent duplication and bidirectional migration of SeqA-associated DNA–protein complex in E. coli. Mol Cell 1:381–387
    [Google Scholar]
  12. Horton R. M., Hunt H. D., Ho S. N., Pullen J. K., Pease L. R. 1989; Engineering hybrid genes without the use of restriction enzymes: gene splicing overlap extension. Gene 77:61–68
    [Google Scholar]
  13. Kang P. J., Craig E. A. 1990; Identification and characterization of a new Escherichia coli gene that is a dosage-dependent suppressor of a dnaK deletion mutation. J Bacteriol 172:2055–2064
    [Google Scholar]
  14. Liberek K., Marszalek J., Ang D., Georgopoulos C., Zylicz M. 1991; Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci U S A 88:2874–2878
    [Google Scholar]
  15. Lindquist S., Craig E. A. 1988; The heat-shock proteins. Annu Rev Genet 22:631–677
    [Google Scholar]
  16. McCarty J. S., Buchberger A., Reinstein J., Bukau B. 1995; The role of ATP in the functional cycle of the DnaK chaperone system. J Mol Biol 249:126–137
    [Google Scholar]
  17. Miller W. G., Lindow S. E. 1997; An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene 191:149–153
    [Google Scholar]
  18. Mogk A., Tomoyasu T., Goloubinoff P., Rüdiger S., Roüder D., Langen H., Bukau B. 1999; Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18:6934–6949
    [Google Scholar]
  19. Packschies L., Theyssen H., Buchberger A., Bukau B., Goody R. S., Reinstein S. 1997; GrpE accelerates nucleotide exchange of the molecular chaperone DnaK with an associative displacement mechanism. Biochemistry 36:3417–3422
    [Google Scholar]
  20. Russell R., Jordan R., McMacken R. 1998; Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone. Biochemistry 37:596–607
    [Google Scholar]
  21. Schonfeld H. J., Schmidt D., Schröder H., Bukau B. 1995; The DnaK chaperone system of E. coli: quaternary structures and interactions of the DnaK and GrpE components. J Biol Chem 270:2183–2189
    [Google Scholar]
  22. Sugimoto S., Nakayama J., Fukuda D., Sonezaki S., Watanabe M., Tosukhowong A., Sonomoto K. 2003; Effect of heterologous expression of molecular chaperone DnaK from Tetragenococcus halophilus on salinity adaptation of Escherichia coli. J Biosci Bioeng 96:129–133
    [Google Scholar]
  23. Sugimoto S., Yoshida H., Mizunoe Y., Tsuruno K., Nakayama J., Sonomoto K. 2006; Structural and functional conversion of molecular chaperone ClpB from Gram-positive halophilic lactic acid bacterium Tetragenococcus halophilus mediated by ATP and stress. J Bacteriol 188:8070–8078
    [Google Scholar]
  24. Sugimoto S., Higashi C., Saruwatari K., Nakayama J., Sonomoto K. 2007; A Gram-negative characteristic segment in Escherichia coli DnaK is essential for the ATP-dependent cooperative function with the co-chaperones DnaJ and GrpE. FEBS Lett 581:2993–2999
    [Google Scholar]
  25. Sugimoto S., Saruwatari K., Higashi C., Tsuruno K., Matsumoto S., Nakayama J., Sonomoto K. 2008; In vivo and in vitro complementation study to compare function of DnaK chaperone systems from halophilic lactic acid bacterium Tetragenococcus halophilus and Escherichia coli. Biosci Biotechnol Biochem 72:811–822
    [Google Scholar]
  26. Suh W. C., Burkholder W. F., Lu C. Z., Zhao X., Gottesman M. E., Gross C. A. 1998; Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. Proc Natl Acad Sci U S A 95:15223–15228
    [Google Scholar]
  27. Suh W. C., Lu C. Z., Gross C. A. 1999; Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ. J Biol Chem 274:30534–30539
    [Google Scholar]
  28. Szabo A., Langer T., Schröder H., Flanagan J., Bukau B., Hartl F. U. 1994; The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system – DnaK, DnaJ and GrpE. Proc Natl Acad Sci U S A 91:10345–10349
    [Google Scholar]
  29. Uehara T., Matsuzawa H., Nishimura A. 2001; HscA is involved in the dynamics of FtsZ-ring formation in Escherichia coli K12. Genes Cells 6:803–814
    [Google Scholar]
  30. Weart R. B., Lee A. H., Chien A., Haeusser D. P., Hill N. S., Levin P. A. 2007; A metabolic sensor governing cell size in bacteria. Cell 130:335–347
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/017376-0
Loading
/content/journal/micro/10.1099/mic.0.2008/017376-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed