1887

Abstract

A balance of the intracellular concentrations of molecular chaperones in response to environmental conditions is of considerable importance for cellular homeostasis. Here, the physiological consequences of overexpression of GrpE in wild-type MC4100 were examined. Overexpression of GrpE resulted in defects in cell division and growth, but overexpression of GrpE-G122D, which carries the G122D point mutation resulting in impaired interaction with DnaK, did not; this indicated that the effect of GrpE overexpression could be related to the DnaK chaperone function. Phase-contrast and fluorescence micrographs suggested that the N-terminal GFP-fused GrpE was colocalized with DnaK on the surface of inclusion bodies. An luciferase-refolding activity assay using purified DnaK, DnaJ and GrpE proteins demonstrated that high concentrations of GrpE significantly inhibited DnaK-mediated refolding. Furthermore, cell-free extracts from wild-type cells and GrpE-G122D-overexpressing cells significantly enhanced the refolding of luciferase. In the GrpE-overexpressing cells, abnormal localization of the cell-division protein FtsZ was observed by indirect immunofluorescence microscopy. In conclusion, the overexpression of GrpE caused a defect in the functionality of the DnaK chaperone system; this would result in filamentous morphology via abnormalities in the cell-division machinery.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/017376-0
2008-07-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/7/1876.html?itemId=/content/journal/micro/10.1099/mic.0.2008/017376-0&mimeType=html&fmt=ahah

References

  1. Blum, P., Ory, J., Bauernfeind, J. & Krska, J. ( 1992; ). Physiological consequence of DnaK and DnaJ overproduction in Escherichia coli. J Bacteriol 174, 7436–7444.
    [Google Scholar]
  2. Brehmer, D., Gässler, C., Rist, W., Mayer, M. P. & Bukau, B. ( 2004; ). Influence of GrpE on DnaK-substrate interactions. J Biol Chem 279, 27957–27964.[CrossRef]
    [Google Scholar]
  3. Bukau, B. & Walker, G. C. ( 1989; ). Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. J Bacteriol 171, 2337–2346.
    [Google Scholar]
  4. Carrio, M. M. & Villaverde, A. ( 2005; ). Localization of chaperones DnaK and GroEL in bacterial inclusion bodies. J Bacteriol 187, 3599–3601.[CrossRef]
    [Google Scholar]
  5. Dai, K. & Lutkenhaus, J. ( 1992; ). The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J Bacteriol 174, 6145–6151.
    [Google Scholar]
  6. Gassler, C. S., Bruchberger, A., Laufen, T., Mayer, M. P., Schröder, H., Valencia, A. & Bukau, B. ( 1998; ). Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone. Proc Natl Acad Sci U S A 95, 15229–15234.[CrossRef]
    [Google Scholar]
  7. Gelinas, A. D., Langsetmo, K., Toth, J., Bethoney, K. A., Stafford, W. F. & Harrison, C. J. ( 2002; ). A structure-based interpretation of E. coli GrpE thermodynamic properties. J Mol Biol 323, 131–142.[CrossRef]
    [Google Scholar]
  8. Grimshaw, J. P., Siegenthaler, R. K., Züger, S., Schönfeld, H. J., Z'graggen, B. R. & Christen, P. ( 2005; ). The heat-sensitive Escherichia coli grpE280 phenotype: impaired interaction of GrpE(G122D) with DnaK. J Mol Biol 353, 888–896.[CrossRef]
    [Google Scholar]
  9. Harrison, C. ( 2003; ). GrpE, a nucleotide exchange factor for DnaK. Cell Stress Chaperones 8, 218–224.[CrossRef]
    [Google Scholar]
  10. Harrison, C. J., Hayer-Hartl, M., Liberto, M. D., Hartl, F. U. & Kuriyan, J. ( 1997; ). Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276, 431–435.[CrossRef]
    [Google Scholar]
  11. Hiraga, S., Ichinose, C., Niki, H. & Yamazoe, M. ( 1998; ). Cell cycle-dependent duplication and bidirectional migration of SeqA-associated DNA–protein complex in E. coli. Mol Cell 1, 381–387.[CrossRef]
    [Google Scholar]
  12. Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. ( 1989; ). Engineering hybrid genes without the use of restriction enzymes: gene splicing overlap extension. Gene 77, 61–68.[CrossRef]
    [Google Scholar]
  13. Kang, P. J. & Craig, E. A. ( 1990; ). Identification and characterization of a new Escherichia coli gene that is a dosage-dependent suppressor of a dnaK deletion mutation. J Bacteriol 172, 2055–2064.
    [Google Scholar]
  14. Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C. & Zylicz, M. ( 1991; ). Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc Natl Acad Sci U S A 88, 2874–2878.[CrossRef]
    [Google Scholar]
  15. Lindquist, S. & Craig, E. A. ( 1988; ). The heat-shock proteins. Annu Rev Genet 22, 631–677.[CrossRef]
    [Google Scholar]
  16. McCarty, J. S., Buchberger, A., Reinstein, J. & Bukau, B. ( 1995; ). The role of ATP in the functional cycle of the DnaK chaperone system. J Mol Biol 249, 126–137.[CrossRef]
    [Google Scholar]
  17. Miller, W. G. & Lindow, S. E. ( 1997; ). An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene 191, 149–153.[CrossRef]
    [Google Scholar]
  18. Mogk, A., Tomoyasu, T., Goloubinoff, P., Rüdiger, S., Roüder, D., Langen, H. & Bukau, B. ( 1999; ). Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18, 6934–6949.[CrossRef]
    [Google Scholar]
  19. Packschies, L., Theyssen, H., Buchberger, A., Bukau, B., Goody, R. S. & Reinstein, S. ( 1997; ). GrpE accelerates nucleotide exchange of the molecular chaperone DnaK with an associative displacement mechanism. Biochemistry 36, 3417–3422.[CrossRef]
    [Google Scholar]
  20. Russell, R., Jordan, R. & McMacken, R. ( 1998; ). Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone. Biochemistry 37, 596–607.[CrossRef]
    [Google Scholar]
  21. Schonfeld, H. J., Schmidt, D., Schröder, H. & Bukau, B. ( 1995; ). The DnaK chaperone system of E. coli: quaternary structures and interactions of the DnaK and GrpE components. J Biol Chem 270, 2183–2189.[CrossRef]
    [Google Scholar]
  22. Sugimoto, S., Nakayama, J., Fukuda, D., Sonezaki, S., Watanabe, M., Tosukhowong, A. & Sonomoto, K. ( 2003; ). Effect of heterologous expression of molecular chaperone DnaK from Tetragenococcus halophilus on salinity adaptation of Escherichia coli. J Biosci Bioeng 96, 129–133.[CrossRef]
    [Google Scholar]
  23. Sugimoto, S., Yoshida, H., Mizunoe, Y., Tsuruno, K., Nakayama, J. & Sonomoto, K. ( 2006; ). Structural and functional conversion of molecular chaperone ClpB from Gram-positive halophilic lactic acid bacterium Tetragenococcus halophilus mediated by ATP and stress. J Bacteriol 188, 8070–8078.[CrossRef]
    [Google Scholar]
  24. Sugimoto, S., Higashi, C., Saruwatari, K., Nakayama, J. & Sonomoto, K. ( 2007; ). A Gram-negative characteristic segment in Escherichia coli DnaK is essential for the ATP-dependent cooperative function with the co-chaperones DnaJ and GrpE. FEBS Lett 581, 2993–2999.[CrossRef]
    [Google Scholar]
  25. Sugimoto, S., Saruwatari, K., Higashi, C., Tsuruno, K., Matsumoto, S., Nakayama, J. & Sonomoto, K. ( 2008; ). In vivo and in vitro complementation study to compare function of DnaK chaperone systems from halophilic lactic acid bacterium Tetragenococcus halophilus and Escherichia coli. Biosci Biotechnol Biochem 72, 811–822.[CrossRef]
    [Google Scholar]
  26. Suh, W. C., Burkholder, W. F., Lu, C. Z., Zhao, X., Gottesman, M. E. & Gross, C. A. ( 1998; ). Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. Proc Natl Acad Sci U S A 95, 15223–15228.[CrossRef]
    [Google Scholar]
  27. Suh, W. C., Lu, C. Z. & Gross, C. A. ( 1999; ). Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ. J Biol Chem 274, 30534–30539.[CrossRef]
    [Google Scholar]
  28. Szabo, A., Langer, T., Schröder, H., Flanagan, J., Bukau, B. & Hartl, F. U. ( 1994; ). The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system – DnaK, DnaJ and GrpE. Proc Natl Acad Sci U S A 91, 10345–10349.[CrossRef]
    [Google Scholar]
  29. Uehara, T., Matsuzawa, H. & Nishimura, A. ( 2001; ). HscA is involved in the dynamics of FtsZ-ring formation in Escherichia coli K12. Genes Cells 6, 803–814.[CrossRef]
    [Google Scholar]
  30. Weart, R. B., Lee, A. H., Chien, A., Haeusser, D. P., Hill, N. S. & Levin, P. A. ( 2007; ). A metabolic sensor governing cell size in bacteria. Cell 130, 335–347.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/017376-0
Loading
/content/journal/micro/10.1099/mic.0.2008/017376-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error