1887

Abstract

Overproduction of the exopolysaccharide alginate and conversion to a mucoid phenotype in are markers for the onset of chronic lung infection in cystic fibrosis (CF). Alginate production is regulated by the extracytoplasmic function (ECF) factor AlgU/T and the cognate anti- factor MucA. Many clinical mucoid isolates carry loss-of-function mutations in . These mutations, including the most common allele, cause C-terminal truncations in MucA, indicating that an inability to regulate AlgU activity by MucA is associated with conversion to the mucoid phenotype. Here we report that a mutation in a stable mucoid strain derived from the parental strain PAO1, designated PAO581, that does not contain the 22 allele, was due to a single-base deletion in (ΔT180), generating another type of C-terminal truncation. A global mariner transposon screen in PAO581 for non-mucoid isolates led to the identification of three regulators of alginate production, (PA1801), (PA1802), and a paralogue (PA3326, designated 2). The PAO581 null mutants of , and 2 showed decreased AlgU transcriptional activity and an accumulation of haemagglutinin (HA)-tagged N-terminal MucA protein with an apparent molecular mass of 15 kDa. The and mutants of a CF mucoid isolate revert to the non-mucoid phenotype. The ClpXP and ClpP2 proteins appear to be part of a proteolytic network that degrades the cytoplasmic portion of truncated MucA proteins to release the sequestered AlgU, which drives alginate biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/017368-0
2008-07-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/7/2119.html?itemId=/content/journal/micro/10.1099/mic.0.2008/017368-0&mimeType=html&fmt=ahah

References

  1. Alba, B. M. & Gross, C. A. ( 2004; ). Regulation of the Escherichia coli σ E-dependent envelope stress response. Mol Microbiol 52, 613–619.[CrossRef]
    [Google Scholar]
  2. Alba, B. M., Leeds, J. A., Onufryk, C., Lu, C. Z. & Gross, C. A. ( 2002; ). DegS and YaeL participate sequentially in the cleavage of RseA to activate the σ E-dependent extracytoplasmic stress response. Genes Dev 16, 2156–2168.[CrossRef]
    [Google Scholar]
  3. Anthony, M., Rose, B., Pegler, M. B., Elkins, M., Service, H., Thamotharampillai, K., Watson, J., Robinson, M., Bye, P. & other authors ( 2002; ). Genetic analysis of Pseudomonas aeruginosa isolates from the sputa of Australian adult cystic fibrosis patients. J Clin Microbiol 40, 2772–2778.[CrossRef]
    [Google Scholar]
  4. Baynham, P. J. & Wozniak, D. J. ( 1996; ). Identification and characterization of AlgZ, an AlgT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription. Mol Microbiol 22, 97–108.[CrossRef]
    [Google Scholar]
  5. Baynham, P. J., Ramsey, D. M., Gvozdyev, B. V., Cordonnier, E. M. & Wozniak, D. J. ( 2006; ). The Pseudomonas aeruginosa ribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type IV pili. J Bacteriol 188, 132–140.[CrossRef]
    [Google Scholar]
  6. Boucher, J. C., Martinezsalazar, J., Schurr, M. J., Mudd, M. H., Yu, H. & Deretic, V. ( 1996; ). Two distinct loci affecting conversion to mucoidy in Pseudomonas aeruginosa in cystic fibrosis encode homologs of the serine protease HtrA. J Bacteriol 178, 511–523.
    [Google Scholar]
  7. Boucher, J. C., Yu, H., Mudd, M. H. & Deretic, V. ( 1997; ). Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun 65, 3838–3846.
    [Google Scholar]
  8. Butler, S. M., Festa, R. A., Pearce, M. J. & Darwin, K. H. ( 2006; ). Self-compartmentalized bacterial proteases and pathogenesis. Mol Microbiol 60, 553–562.[CrossRef]
    [Google Scholar]
  9. Chaba, R., Grigorova, I. L., Flynn, J. M., Baker, T. A. & Gross, C. A. ( 2007; ). Design principles of the proteolytic cascade governing the σ E-mediated envelope stress response in Escherichia coli: keys to graded, buffered, and rapid signal transduction. Genes Dev 21, 124–136.[CrossRef]
    [Google Scholar]
  10. Coleman, F. T., Mueschenborn, S., Meluleni, G., Ray, C., Carey, V. J., Vargas, S. O., Cannon, C. L., Ausubel, F. M. & Pier, G. B. ( 2003; ). Hypersusceptibility of cystic fibrosis mice to chronic Pseudomonas aeruginosa oropharyngeal colonization and lung infection. Proc Natl Acad Sci U S A 100, 1949–1954.[CrossRef]
    [Google Scholar]
  11. Deretic, V., Dikshit, R., Konyecsni, W. M., Chakrabarty, A. M. & Misra, T. K. ( 1989; ). The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J Bacteriol 171, 1278–1283.
    [Google Scholar]
  12. Figurski, D. H. & Helinski, D. R. ( 1979; ). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76, 1648–1652.[CrossRef]
    [Google Scholar]
  13. Firoved, A. M. & Deretic, V. ( 2003; ). Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa. J Bacteriol 185, 1071–1081.[CrossRef]
    [Google Scholar]
  14. Flynn, J. M., Neher, S. B., Kim, Y. I., Sauer, R. T. & Baker, T. A. ( 2003; ). Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 11, 671–683.[CrossRef]
    [Google Scholar]
  15. Franklin, M. J., Douthit, S. A. & McClure, M. A. ( 2004; ). Evidence that the algI/algJ gene cassette, required for O acetylation of Pseudomonas aeruginosa alginate, evolved by lateral gene transfer. J Bacteriol 186, 4759–4773.[CrossRef]
    [Google Scholar]
  16. Fyfe, J. A. M. & Govan, J. R. W. ( 1980; ). Alginate synthesis in mucoid Pseudomonas aeruginosa: a chromosomal locus involved in control. J Gen Microbiol 119, 443–450.
    [Google Scholar]
  17. Fyfe, J. A. M. & Govan, J. R. W. ( 1983; ). Synthesis, regulation and biological function of bacterial alginate. In Progress in Industrial Microbiology, vol. 18, Microbial Polysaccharides, pp. 45–83. Edited by M. E. Bushell. London: Elsevier.
  18. Goldberg, J. B. & Dahnke, T. ( 1992; ). Pseudomonas aeruginosa AlgB, which modulates the expression of alginate, is a member of the NtrC subclass of prokaryotic regulators. Mol Microbiol 6, 59–66.[CrossRef]
    [Google Scholar]
  19. Gottesman, S. ( 1999; ). Regulation by proteolysis: developmental switches. Curr Opin Microbiol 2, 142–147.[CrossRef]
    [Google Scholar]
  20. Gottesman, S., Wickner, S. & Maurizi, M. R. ( 1997; ). Protein quality control: triage by chaperones and proteases. Genes Dev 11, 815–823.[CrossRef]
    [Google Scholar]
  21. Govan, J. R. & Deretic, V. ( 1996; ). Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60, 539–574.
    [Google Scholar]
  22. Grigorova, I. L., Chaba, R., Zhong, H. J., Alba, B. M., Rhodius, V., Herman, C. & Gross, C. A. ( 2004; ). Fine-tuning of the Escherichia coli σ E envelope stress response relies on multiple mechanisms to inhibit signal-independent proteolysis of the transmembrane anti-sigma factor, RseA. Genes Dev 18, 2686–2697.[CrossRef]
    [Google Scholar]
  23. Head, N. E. & Yu, H. ( 2004; ). Cross-sectional analysis of clinical and environmental isolates of Pseudomonas aeruginosa: biofilm formation, virulence, and genome diversity. Infect Immun 72, 133–144.[CrossRef]
    [Google Scholar]
  24. Henry, R. L., Mellis, C. M. & Petrovic, L. ( 1992; ). Mucoid Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr Pulmonol 12, 158–161.[CrossRef]
    [Google Scholar]
  25. Hoang, T. T., Kutchma, A. J., Becher, A. & Schweizer, H. P. ( 2000; ). Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 43, 59–72.[CrossRef]
    [Google Scholar]
  26. Iyoda, S. & Watanabe, H. ( 2005; ). ClpXP protease controls expression of the type III protein secretion system through regulation of RpoS and GrlR levels in enterohemorrhagic Escherichia coli. J Bacteriol 187, 4086–4094.[CrossRef]
    [Google Scholar]
  27. Jain, S. & Ohman, D. E. ( 2005; ). Role of an alginate lyase for alginate transport in mucoid Pseudomonas aeruginosa. Infect Immun 73, 6429–6436.[CrossRef]
    [Google Scholar]
  28. Joshi, S. A., Hersch, G. L., Baker, T. A. & Sauer, R. T. ( 2004; ). Communication between ClpX and ClpP during substrate processing and degradation. Nat Struct Mol Biol 11, 404–411.[CrossRef]
    [Google Scholar]
  29. Kanehara, K., Ito, K. & Akiyama, Y. ( 2003; ). YaeL proteolysis of RseA is controlled by the PDZ domain of YaeL and a Gln-rich region of RseA. EMBO J 22, 6389–6398.[CrossRef]
    [Google Scholar]
  30. Keith, L. M. & Bender, C. L. ( 2001; ). Genetic divergence in the algT-muc operon controlling alginate biosynthesis and response to environmental stress in Pseudomonas syringae. DNA Seq 12, 125–129.
    [Google Scholar]
  31. Knutson, C. A. & Jeanes, A. ( 1968; ). A new modification of the carbazole reaction: application to heteropolysaccharides. Anal Biochem 24, 470–481.[CrossRef]
    [Google Scholar]
  32. Lyczak, J. B., Cannon, C. L. & Pier, G. B. ( 2002; ). Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15, 194–222.[CrossRef]
    [Google Scholar]
  33. Mathee, K., McPherson, C. J. & Ohman, D. E. ( 1997; ). Posttranslational control of the algT (algU)-encoded σ 22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN). J Bacteriol 179, 3711–3720.
    [Google Scholar]
  34. Msadek, T., Dartois, V., Kunst, F., Herbaud, M. L., Denizot, F. & Rapoport, G. ( 1998; ). ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol 27, 899–914.[CrossRef]
    [Google Scholar]
  35. Porankiewicz, J., Wang, J. & Clarke, A. K. ( 1999; ). New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol Microbiol 32, 449–458.[CrossRef]
    [Google Scholar]
  36. Qiu, D., Eisinger, V. M., Rowen, D. W. & Yu, H. D. ( 2007; ). Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 104, 8107–8112.[CrossRef]
    [Google Scholar]
  37. Ramsey, D. M. & Wozniak, D. J. ( 2005; ). Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56, 309–322.[CrossRef]
    [Google Scholar]
  38. Rowen, D. W. & Deretic, V. ( 2000; ). Membrane-to-cytosol redistribution of ECF sigma factor AlgU and conversion to mucoidy in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Mol Microbiol 36, 314–327.[CrossRef]
    [Google Scholar]
  39. Rubin, E. J., Akerley, B. J., Novik, V. N., Lampe, D. J., Husson, R. N. & Mekalanos, J. J. ( 1999; ). In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci U S A 96, 1645–1650.[CrossRef]
    [Google Scholar]
  40. Schurr, M. J., Yu, H., Boucher, J. C., Hibler, N. S. & Deretic, V. ( 1995; ). Multiple promoters and induction by heat shock of the gene encoding the alternative sigma factor AlgU (σ E) which controls mucoidy in cystic fibrosis isolates of Pseudomonas aeruginosa. J Bacteriol 177, 5670–5679.
    [Google Scholar]
  41. Schweizer, H. P. & Hoang, T. T. ( 1995; ). An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 158, 15–22.[CrossRef]
    [Google Scholar]
  42. Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S., Hufnagle, W. O., Kowalik, D. J. & other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964.[CrossRef]
    [Google Scholar]
  43. Tart, A. H., Wolfgang, M. C. & Wozniak, D. J. ( 2005; ). The alternative sigma factor AlgT represses Pseudomonas aeruginosa flagellum biosynthesis by inhibiting expression of fleQ. J Bacteriol 187, 7955–7962.[CrossRef]
    [Google Scholar]
  44. Tart, A. H., Blanks, M. J. & Wozniak, D. J. ( 2006; ). The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates. J Bacteriol 188, 6483–6489.[CrossRef]
    [Google Scholar]
  45. Tomoyasu, T., Ohkishi, T., Ukyo, Y., Tokumitsu, A., Takaya, A., Suzuki, M., Sekiya, K., Matsui, H., Kutsukake, K. & Yamamoto, T. ( 2002; ). The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar Typhimurium. J Bacteriol 184, 645–653.[CrossRef]
    [Google Scholar]
  46. Walsh, N. P., Alba, B. M., Bose, B., Gross, C. A. & Sauer, R. T. ( 2003; ). OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113, 61–71.[CrossRef]
    [Google Scholar]
  47. West, S. E., Schweizer, H. P., Dall, C., Sample, A. K. & Runyen-Janecky, L. J. ( 1994; ). Construction of improved EscherichiaPseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 148, 81–86.[CrossRef]
    [Google Scholar]
  48. Wong, S. M. & Mekalanos, J. J. ( 2000; ). Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97, 10191–10196.[CrossRef]
    [Google Scholar]
  49. Wood, L. F., Leech, A. J. & Ohman, D. E. ( 2006; ). Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of σ 22 (AlgT) and the AlgW and Prc proteases. Mol Microbiol 62, 412–426.[CrossRef]
    [Google Scholar]
  50. Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U., Cekici, A., Meyer, K. C., Birrer, P., Bellon, G., Berger, J. & other authors ( 2002; ). Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109, 317–325.[CrossRef]
    [Google Scholar]
  51. Wu, W., Badrane, H., Arora, S., Baker, H. V. & Jin, S. ( 2004; ). MucA-mediated coordination of type III secretion and alginate synthesis in Pseudomonas aeruginosa. J Bacteriol 186, 7575–7585.[CrossRef]
    [Google Scholar]
  52. Yorgey, P., Rahme, L. G., Tan, M. W. & Ausubel, F. M. ( 2001; ). The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice. Mol Microbiol 41, 1063–1076.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/017368-0
Loading
/content/journal/micro/10.1099/mic.0.2008/017368-0
Loading

Data & Media loading...

Supplements

[PDF file](15 KB)

PDF

[PDF file](93 KB)

PDF

[PDF file](78 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error