1887

Abstract

Overproduction of the exopolysaccharide alginate and conversion to a mucoid phenotype in are markers for the onset of chronic lung infection in cystic fibrosis (CF). Alginate production is regulated by the extracytoplasmic function (ECF) factor AlgU/T and the cognate anti- factor MucA. Many clinical mucoid isolates carry loss-of-function mutations in . These mutations, including the most common allele, cause C-terminal truncations in MucA, indicating that an inability to regulate AlgU activity by MucA is associated with conversion to the mucoid phenotype. Here we report that a mutation in a stable mucoid strain derived from the parental strain PAO1, designated PAO581, that does not contain the 22 allele, was due to a single-base deletion in (ΔT180), generating another type of C-terminal truncation. A global mariner transposon screen in PAO581 for non-mucoid isolates led to the identification of three regulators of alginate production, (PA1801), (PA1802), and a paralogue (PA3326, designated 2). The PAO581 null mutants of , and 2 showed decreased AlgU transcriptional activity and an accumulation of haemagglutinin (HA)-tagged N-terminal MucA protein with an apparent molecular mass of 15 kDa. The and mutants of a CF mucoid isolate revert to the non-mucoid phenotype. The ClpXP and ClpP2 proteins appear to be part of a proteolytic network that degrades the cytoplasmic portion of truncated MucA proteins to release the sequestered AlgU, which drives alginate biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/017368-0
2008-07-01
2022-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/7/2119.html?itemId=/content/journal/micro/10.1099/mic.0.2008/017368-0&mimeType=html&fmt=ahah

References

  1. Alba B. M., Gross C. A. 2004; Regulation of the Escherichia coli σE-dependent envelope stress response. Mol Microbiol 52:613–619
    [Google Scholar]
  2. Alba B. M., Leeds J. A., Onufryk C., Lu C. Z., Gross C. A. 2002; DegS and YaeL participate sequentially in the cleavage of RseA to activate the σE-dependent extracytoplasmic stress response. Genes Dev 16:2156–2168
    [Google Scholar]
  3. Anthony M., Rose B., Pegler M. B., Elkins M., Service H., Thamotharampillai K., Watson J., Robinson M., Bye P. other authors 2002; Genetic analysis of Pseudomonas aeruginosa isolates from the sputa of Australian adult cystic fibrosis patients. J Clin Microbiol 40:2772–2778
    [Google Scholar]
  4. Baynham P. J., Wozniak D. J. 1996; Identification and characterization of AlgZ, an AlgT-dependent DNA-binding protein required for Pseudomonas aeruginosa algD transcription. Mol Microbiol 22:97–108
    [Google Scholar]
  5. Baynham P. J., Ramsey D. M., Gvozdyev B. V., Cordonnier E. M., Wozniak D. J. 2006; The Pseudomonas aeruginosa ribbon-helix-helix DNA-binding protein AlgZ (AmrZ) controls twitching motility and biogenesis of type IV pili. J Bacteriol 188:132–140
    [Google Scholar]
  6. Boucher J. C., Martinezsalazar J., Schurr M. J., Mudd M. H., Yu H., Deretic V. 1996; Two distinct loci affecting conversion to mucoidy in Pseudomonas aeruginosa in cystic fibrosis encode homologs of the serine protease HtrA. J Bacteriol 178:511–523
    [Google Scholar]
  7. Boucher J. C., Yu H., Mudd M. H., Deretic V. 1997; Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection. Infect Immun 65:3838–3846
    [Google Scholar]
  8. Butler S. M., Festa R. A., Pearce M. J., Darwin K. H. 2006; Self-compartmentalized bacterial proteases and pathogenesis. Mol Microbiol 60:553–562
    [Google Scholar]
  9. Chaba R., Grigorova I. L., Flynn J. M., Baker T. A., Gross C. A. 2007; Design principles of the proteolytic cascade governing the σE-mediated envelope stress response in Escherichia coli: keys to graded, buffered, and rapid signal transduction. Genes Dev 21:124–136
    [Google Scholar]
  10. Coleman F. T., Mueschenborn S., Meluleni G., Ray C., Carey V. J., Vargas S. O., Cannon C. L., Ausubel F. M., Pier G. B. 2003; Hypersusceptibility of cystic fibrosis mice to chronic Pseudomonas aeruginosa oropharyngeal colonization and lung infection. Proc Natl Acad Sci U S A 100:1949–1954
    [Google Scholar]
  11. Deretic V., Dikshit R., Konyecsni W. M., Chakrabarty A. M., Misra T. K. 1989; The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J Bacteriol 171:1278–1283
    [Google Scholar]
  12. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652
    [Google Scholar]
  13. Firoved A. M., Deretic V. 2003; Microarray analysis of global gene expression in mucoid Pseudomonas aeruginosa. J Bacteriol 185:1071–1081
    [Google Scholar]
  14. Flynn J. M., Neher S. B., Kim Y. I., Sauer R. T., Baker T. A. 2003; Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 11:671–683
    [Google Scholar]
  15. Franklin M. J., Douthit S. A., McClure M. A. 2004; Evidence that the algI/algJ gene cassette, required for O acetylation of Pseudomonas aeruginosa alginate, evolved by lateral gene transfer. J Bacteriol 186:4759–4773
    [Google Scholar]
  16. Fyfe J. A. M., Govan J. R. W. 1980; Alginate synthesis in mucoid Pseudomonas aeruginosa: a chromosomal locus involved in control. J Gen Microbiol 119:443–450
    [Google Scholar]
  17. Fyfe J. A. M., Govan J. R. W. 1983; Synthesis, regulation and biological function of bacterial alginate. In Progress in Industrial Microbiology,vol. 18, Microbial Polysaccharides pp 45–83 Edited by Bushell M. E. London: Elsevier;
    [Google Scholar]
  18. Goldberg J. B., Dahnke T. 1992; Pseudomonas aeruginosa AlgB, which modulates the expression of alginate, is a member of the NtrC subclass of prokaryotic regulators. Mol Microbiol 6:59–66
    [Google Scholar]
  19. Gottesman S. 1999; Regulation by proteolysis: developmental switches. Curr Opin Microbiol 2:142–147
    [Google Scholar]
  20. Gottesman S., Wickner S., Maurizi M. R. 1997; Protein quality control: triage by chaperones and proteases. Genes Dev 11:815–823
    [Google Scholar]
  21. Govan J. R., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60:539–574
    [Google Scholar]
  22. Grigorova I. L., Chaba R., Zhong H. J., Alba B. M., Rhodius V., Herman C., Gross C. A. 2004; Fine-tuning of the Escherichia coli σE envelope stress response relies on multiple mechanisms to inhibit signal-independent proteolysis of the transmembrane anti-sigma factor, RseA. Genes Dev 18:2686–2697
    [Google Scholar]
  23. Head N. E., Yu H. 2004; Cross-sectional analysis of clinical and environmental isolates of Pseudomonas aeruginosa: biofilm formation, virulence, and genome diversity. Infect Immun 72:133–144
    [Google Scholar]
  24. Henry R. L., Mellis C. M., Petrovic L. 1992; Mucoid Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr Pulmonol 12:158–161
    [Google Scholar]
  25. Hoang T. T., Kutchma A. J., Becher A., Schweizer H. P. 2000; Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 43:59–72
    [Google Scholar]
  26. Iyoda S., Watanabe H. 2005; ClpXP protease controls expression of the type III protein secretion system through regulation of RpoS and GrlR levels in enterohemorrhagic Escherichia coli. J Bacteriol 187:4086–4094
    [Google Scholar]
  27. Jain S., Ohman D. E. 2005; Role of an alginate lyase for alginate transport in mucoid Pseudomonas aeruginosa. Infect Immun 73:6429–6436
    [Google Scholar]
  28. Joshi S. A., Hersch G. L., Baker T. A., Sauer R. T. 2004; Communication between ClpX and ClpP during substrate processing and degradation. Nat Struct Mol Biol 11:404–411
    [Google Scholar]
  29. Kanehara K., Ito K., Akiyama Y. 2003; YaeL proteolysis of RseA is controlled by the PDZ domain of YaeL and a Gln-rich region of RseA. EMBO J 22:6389–6398
    [Google Scholar]
  30. Keith L. M., Bender C. L. 2001; Genetic divergence in the algT-muc operon controlling alginate biosynthesis and response to environmental stress in Pseudomonas syringae. DNA Seq 12:125–129
    [Google Scholar]
  31. Knutson C. A., Jeanes A. 1968; A new modification of the carbazole reaction: application to heteropolysaccharides. Anal Biochem 24:470–481
    [Google Scholar]
  32. Lyczak J. B., Cannon C. L., Pier G. B. 2002; Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222
    [Google Scholar]
  33. Mathee K., McPherson C. J., Ohman D. E. 1997; Posttranslational control of the algT ( algU)-encoded σ22 for expression of the alginate regulon in Pseudomonas aeruginosa and localization of its antagonist proteins MucA and MucB (AlgN. J Bacteriol 179:3711–3720
    [Google Scholar]
  34. Msadek T., Dartois V., Kunst F., Herbaud M. L., Denizot F., Rapoport G. 1998; ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol 27:899–914
    [Google Scholar]
  35. Porankiewicz J., Wang J., Clarke A. K. 1999; New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol Microbiol 32:449–458
    [Google Scholar]
  36. Qiu D., Eisinger V. M., Rowen D. W., Yu H. D. 2007; Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 104:8107–8112
    [Google Scholar]
  37. Ramsey D. M., Wozniak D. J. 2005; Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56:309–322
    [Google Scholar]
  38. Rowen D. W., Deretic V. 2000; Membrane-to-cytosol redistribution of ECF sigma factor AlgU and conversion to mucoidy in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Mol Microbiol 36:314–327
    [Google Scholar]
  39. Rubin E. J., Akerley B. J., Novik V. N., Lampe D. J., Husson R. N., Mekalanos J. J. 1999; In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci U S A 96:1645–1650
    [Google Scholar]
  40. Schurr M. J., Yu H., Boucher J. C., Hibler N. S., Deretic V. 1995; Multiple promoters and induction by heat shock of the gene encoding the alternative sigma factor AlgU ( σE) which controls mucoidy in cystic fibrosis isolates of Pseudomonas aeruginosa. J Bacteriol 177:5670–5679
    [Google Scholar]
  41. Schweizer H. P., Hoang T. T. 1995; An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 158:15–22
    [Google Scholar]
  42. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J. other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964
    [Google Scholar]
  43. Tart A. H., Wolfgang M. C., Wozniak D. J. 2005; The alternative sigma factor AlgT represses Pseudomonas aeruginosa flagellum biosynthesis by inhibiting expression of fleQ. J Bacteriol 187:7955–7962
    [Google Scholar]
  44. Tart A. H., Blanks M. J., Wozniak D. J. 2006; The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates. J Bacteriol 188:6483–6489
    [Google Scholar]
  45. Tomoyasu T., Ohkishi T., Ukyo Y., Tokumitsu A., Takaya A., Suzuki M., Sekiya K., Matsui H., Kutsukake K., Yamamoto T. 2002; The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar Typhimurium . J Bacteriol 184:645–653
    [Google Scholar]
  46. Walsh N. P., Alba B. M., Bose B., Gross C. A., Sauer R. T. 2003; OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113:61–71
    [Google Scholar]
  47. West S. E., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J. 1994; Construction of improved EscherichiaPseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 148:81–86
    [Google Scholar]
  48. Wong S. M., Mekalanos J. J. 2000; Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 97:10191–10196
    [Google Scholar]
  49. Wood L. F., Leech A. J., Ohman D. E. 2006; Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of σ22 (AlgT) and the AlgW and Prc proteases. Mol Microbiol 62:412–426
    [Google Scholar]
  50. Worlitzsch D., Tarran R., Ulrich M., Schwab U., Cekici A., Meyer K. C., Birrer P., Bellon G., Berger J. other authors 2002; Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109:317–325
    [Google Scholar]
  51. Wu W., Badrane H., Arora S., Baker H. V., Jin S. 2004; MucA-mediated coordination of type III secretion and alginate synthesis in Pseudomonas aeruginosa. J Bacteriol 186:7575–7585
    [Google Scholar]
  52. Yorgey P., Rahme L. G., Tan M. W., Ausubel F. M. 2001; The roles of mucD and alginate in the virulence of Pseudomonas aeruginosa in plants, nematodes and mice. Mol Microbiol 41:1063–1076
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/017368-0
Loading
/content/journal/micro/10.1099/mic.0.2008/017368-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error