1887

Abstract

We have shown previously that grows on maltodextrins which are actively transported across the outer membrane by the MalA protein. Evidence for energy-coupled transport was obtained by deletion of the genes which abolished transport. However, removal of the TonB protein, which together with the ExbB ExbD proteins is predicted to form an energy-coupling device between the cytoplasmic membrane and the outer membrane, left transport unaffected. Here we identify an additional gene encoded by the ORF, which when deleted abolished maltose transport. MalA contains a TonB box that reads EEVVIT and is predicted to interact with TonB. Replacement of valine number 15 in the TonB box by proline abolished maltose transport. Maltose was transported across the cytoplasmic membrane by the MalY protein (CC2283). Maltose transport was induced by maltose and repressed by the MalI protein (CC2284). In addition to MalA, MalY and MalI, the locus encodes two predicted cytoplasmic -amylases (CC2285 and CC2286) and a periplasmic glucoamylase (CC2282). The TonB dependence together with the previously described ExbB ExbD dependence demonstrates energy-coupled maltose transport across the outer membrane. MalY is involved in maltose transport across the cytoplasmic membrane by a presumably ion-coupled mechanism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/017350-0
2008-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/6/1748.html?itemId=/content/journal/micro/10.1099/mic.0.2008/017350-0&mimeType=html&fmt=ahah

References

  1. Alexeyev M. F., Shokolenko I. N., Croughan T. P. 1995; New mini-Tn 5 derivatives for insertion mutagenesis and genetic engineering in Gram-negative bacteria. Can J Microbiol 41:1053–1055
    [Google Scholar]
  2. Andrews S. C., Robinson A. K., Rodriguez F. 2003; Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237
    [Google Scholar]
  3. Benz R., Schmid A., Vos-Scheperkeuter G. H. 1987; Mechanism of sugar transport through the sugar-specific LamB channel of Escherichia coli outer membrane. J Membr Biol 100:21–29
    [Google Scholar]
  4. Blanvillain S., Meyer D., Boulanger A., Lautier M., Guynet C., Deancé N., Vasse J., Lauber E., Arlat M. 2007; Plant carbohydrate scavenging through TonB-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria. PLoS ONE 2:e224
    [Google Scholar]
  5. Braun V., Mahren S. 2007; Transfer of energy and information across the periplasm in iron transport and regulation. In The Periplasm pp 276–286 Edited by Ehrmann M. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Braun V., Hantke K., Köster W. 1998; Bacterial iron transport: mechanisms, genetics and regulation. In Metal Ions in Biological Systems, 35, Iron Transport and Storage in Microorganisms pp 67–145 Edited by Sigel A., Sigel H. New York: Marcel Dekker;
    [Google Scholar]
  7. Busch W., Saier M. H. 2002; The transporter classification (TC) system (2002. Crit Rev Biochem Mol Biol 37:287–337
    [Google Scholar]
  8. Cadieux N., Kadner R. J. 1999; Site-directed disulfide bonding reveals an interaction site between energy-coupling protein TonB and BtuB, the outer membrane cobalamin transporter. Proc Natl Acad Sci U S A 96:10673–10678
    [Google Scholar]
  9. Chu B. C. H., Peacock R. S., Vogel H. J. 2007; Bioinformatic analysis of the TonB protein family. Biometals 20:467–483
    [Google Scholar]
  10. Davis G. S., Flannery E. L., Mobley H. L. T. 2006; Helicobacter pylori HP1512 is a nickel-responsive NikR-regulated outer membrane protein. Infect Immun 74:6811–6820
    [Google Scholar]
  11. Edwards P., Smith J. 1991; A transducing bacteriophage for Caulobacter crescentus uses the paracrystalline surface array. J Bacteriol 173:5568–5572
    [Google Scholar]
  12. Ely B. 1991; Genetics of Caulobacter crescentus . Methods Enzymol 204:372–384
    [Google Scholar]
  13. Ernst F. D., Stoof J., Horrevoets W. M., Kuipers E. J., Kusters J. G., van Vliet H. M. 2006; NikR mediates nickel-responsive transcriptional regulation of the Heliccobacter pylori outer membrane proteins FecA3 (HP1400) and FrpB4 (HP1512. Infect Immun 74:6821–6828
    [Google Scholar]
  14. Evinger M., Agabian N. 1977; Envelope-associated nucleotide from Caulobacter crescentus stalked and swarmer cells. J Bacteriol 132:294–301
    [Google Scholar]
  15. Ferguson A. D., Deisenhofer J. 2004; Metal import through microbial membranes. Cell 116:15–24
    [Google Scholar]
  16. Heller K. J., Kadner R. J., Günther K. 1988; Suppression of the btuB451 mutation by mutations in the tonB gene suggests a direct interaction between TonB and TonB-dependent receptor proteins in the outer membrane of Escherichia coli . Gene 64:147–153
    [Google Scholar]
  17. Jenal U., Fuchs T. 1998; An essential protease involved in bacterial cell-cycle control. EMBO J 17:5658–5669
    [Google Scholar]
  18. Larsen R. A., Postle K. 2001; Conserved residues Ser(16) and His(20) and their relative positioning are essential for TonB activity, cross-linking of TonB with ExbB, and the ability of TonB to respond to proton motive force. J Biol Chem 276:8111–8117
    [Google Scholar]
  19. Larsen R. A., Deckert G. E., Kastead K. A., Devanathan S., Keller K. L., Postle K. 2007; His20 provides the sole functionally significant side chain in the essential TonB transmembrane domain. J Bacteriol 189:2825–2833
    [Google Scholar]
  20. Neugebauer H., Herrmann C., Kammer W., Schwarz G., Nordheim A., Braun V. 2005; ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus . J Bacteriol 187:8300–8311
    [Google Scholar]
  21. Nierman W. C., Feldblyum T. V., Laub M. T., Paulsen I. T., Nelson K. E., Eisen J., Heidelberg J. F., Alley M. R. K., Ohta N. other authors 2001; Complete genome sequence of Caulobacter crescentus . Proc Natl Acad Sci U S A 98:4136–4141
    [Google Scholar]
  22. Ogierman M., Braun V. 2003; Interaction between the outer membrane ferric citrate transporter FecA and TonB: studies of the FecA TonB box. J Bacteriol 185:1870–1885
    [Google Scholar]
  23. Pawelek P. D., Croteau N., Ng-Thow-Hing C., Khursigara C. M., Moiseeva M., Allaire M., Coulton J. W. 2006; Structure of TonB in complex with FhuA, E. coli outer membrane receptor. Science 312:1399–1402
    [Google Scholar]
  24. Postle K., Kadner R. J. 2003; Touch and go: tying TonB to transport. Mol Microbiol 49:869–882
    [Google Scholar]
  25. Prentki P., Krisch H. M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313
    [Google Scholar]
  26. Reeves A. R., D'Elia J. N., Frias J., Salyers A. A. 1996; A Bacteroides thetaiotaomicron outer membrane protein that is essential for utilization of maltooligosaccharides and starch. J Bacteriol 178:823–830
    [Google Scholar]
  27. Sambrook H., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Schalk I. J., Yue W. W., Buchanan S. K. 2004; Recognition of iron-free siderophores by TonB-dependent iron transporters. Mol Microbiol 54:14–22
    [Google Scholar]
  29. Schauer K., Gouget B., Carrière M., Labigne A., van Reuss H. 2007; Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery. Mol Microbiol 63:1054–1068
    [Google Scholar]
  30. Schöffler H., Braun V. 1989; Transport across the outer membrane of Escherichia coli K12 via the FhuA receptor is regulated by the TonB protein of the cytoplasmic membrane. Mol Gen Genet 217:378–383
    [Google Scholar]
  31. Shultis D. D., Purdy M. D., Branchs C. N., Wiener M. C. 2006; Outer membrane active transport: structure of the BtuB: TonB complex. Science 312:1396–1399
    [Google Scholar]
  32. Traub I., Gaisser S., Braun V. 1993; Activity domains of the TonB protein. Mol Microbiol 8:409–423
    [Google Scholar]
  33. Wagner J. K., Setayeshgar S., Sharon L. A., Reilly J. P., Brun Y. V. 2006; A nutrient uptake role for bacterial cell envelope extensions. Proc Natl Acad Sci U S A 103:11772–11777
    [Google Scholar]
  34. Wandersman C., Delepelaire P. 2004; Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol 58:611–647
    [Google Scholar]
  35. Wexler M., Yeoman K. H., Stevens J. M., de Luca N. G., Sawers G., Johnston A. W. 2001; The Rhizobium leguminosarum tonB gene is required for the uptake of siderophore and haem as sources of iron. Mol Microbiol 41:801–816
    [Google Scholar]
  36. White J. C., Di Girolamo P. M., Fu M. L., Preston Y. A., Bradbeer C. 1973; Transport of vitamin B12 in Escherichia coli . Location and properties of the initial B12-binding site. J Biol Chem 248:3978–3986
    [Google Scholar]
  37. Wiener M. C. 2005; TonB-dependent outer membrane transport: going for Baroque. Curr Opin Struct Biol 15:394–400
    [Google Scholar]
  38. Wyckoff E. E., Mey A. R., Payne S. M. 2007; Iron acqusisition in Vibrio cholerae . Biometals 20:405–416
    [Google Scholar]
  39. Zhao Q., Poole K. 2000; A second tonB gene in Pseudomonas aeruginosa is linked to the exbB and exbD genes. FEMS Microbiol Lett 184:127–132
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/017350-0
Loading
/content/journal/micro/10.1099/mic.0.2008/017350-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error