1887

Abstract

Analysis of the genome of revealed four genes encoding putative symporters with homology to ActP, an acetate transporter in . Three of these genes, , and , are highly similar (over 90 % identical) and fell within a tight phylogenetic cluster (Group I) consisting entirely of homologues. Transcript levels for all three genes increased in response to acetate limitation. The fourth gene, , is phylogenetically distinct (Group II) and its expression was not influenced by acetate availability. Deletion of any one of the three genes in Group I did not significantly affect acetate-dependent growth, suggesting functional redundancy. Attempts to recover mutants in which various combinations of two of these genes were deleted were unsuccessful, suggesting that at least two of these three transporter genes are required to support growth. Closely related Group I genes were found in the genomes of other species whose genome sequences are available. Furthermore, related genes could be detected in genomic DNA extracted from a subsurface environment undergoing uranium bioremediation. The transporter genes recovered from the subsurface were most closely related to Group I genes found in the genomes of cultured species that were isolated from contaminated subsurface environments. The increased expression of these genes in response to acetate limitation, their high degree of conservation among species and the ease with which they can be detected in environmental samples suggest that Group I genes of the may be suitable biomarkers for acetate limitation. Monitoring the expression of these genes could aid in the design of strategies for acetate-mediated bioremediation of uranium-contaminated groundwater.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/017244-0
2008-09-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/9/2589.html?itemId=/content/journal/micro/10.1099/mic.0.2008/017244-0&mimeType=html&fmt=ahah

References

  1. Amos, B. K., Sung, Y., Fletcher, K. E., Gentry, T. J., Wu, W. M., Criddle, C. S., Zhou, J. & Loffler, F. E. ( 2007; ). Detection and quantification of Geobacter lovleyi strain SZ: implications for bioremediation at tetrachloroethene- and uranium-impacted sites. Appl Environ Microbiol 73, 6898–6904.[CrossRef]
    [Google Scholar]
  2. Anderson, R. T., Vrionis, H. A., Ortiz-Bernad, I., Resch, C. T., Long, P. E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D. R. & other authors ( 2003; ). Stimulated in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69, 5884–5891.[CrossRef]
    [Google Scholar]
  3. Caccavo, F., Jr, Lonergan, D. J., Lovley, D. R., Davis, M., Stolz, J. F. & McInerney, M. J. ( 1994; ). Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60, 3752–3759.
    [Google Scholar]
  4. Coppi, M. V., Leang, C., Sandler, S. J. & Lovley, D. R. ( 2001; ). Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67, 3180–3187.[CrossRef]
    [Google Scholar]
  5. Cummings, D. E., Snoeyenbos-West, O. L., Newby, D. T., Niggemyer, A. M., Lovley, D. R., Achenbach, L. A. & Rosenzweig, R. F. ( 2003; ). Diversity of Geobacteraceae species inhabiting metal-polluted freshwater lake sediments ascertained by 16S rDNA analyses. Microb Ecol 46, 257–269.
    [Google Scholar]
  6. Didonato, R. J., Jr, Postier, B., Nevin, K., Xu, B., Liu, A. & Lovley, D. R. ( 2006; ). Microarray analysis of donor-limited and acceptor-limited Geobacter metallireducens. In 106th General ASM Meeting, Orlando, FL, K-109.
  7. Eden, P. A., Schmidt, T. M., Blakemore, R. P. & Pace, N. R. ( 1991; ). Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int J Syst Bacteriol 41, 324–325.[CrossRef]
    [Google Scholar]
  8. Esteve-Nuñez, A., Rothermich, M., Sharma, M. & Lovley, D. R. ( 2005; ). Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture. Environ Microbiol 7, 641–648.[CrossRef]
    [Google Scholar]
  9. Finneran, K. T., Housewright, M. E. & Lovley, D. R. ( 2002; ). Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ Microbiol 4, 510–516.[CrossRef]
    [Google Scholar]
  10. Gimenez, R., Nunez, M. F., Badia, J., Aguilar, J. & Baldoma, L. ( 2003; ). The gene yjcG, cotranscribed with the gene acs, encodes an acetate permease in Escherichia coli. J Bacteriol 185, 6448–6455.[CrossRef]
    [Google Scholar]
  11. Haveman, S. A., Holmes, D. E., Ding, Y. H., Ward, J. E., Didonato, R. J., Jr & Lovley, D. R. ( 2006; ). c-Type cytochromes in Pelobacter carbinolicus. Appl Environ Microbiol 72, 6980–6985.[CrossRef]
    [Google Scholar]
  12. Holmes, D. E., Finneran, K. T., O'Neil, R. A. & Lovley, D. R. ( 2002; ). Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol 68, 2300–2306.[CrossRef]
    [Google Scholar]
  13. Holmes, D. E., Nevin, K. P. & Lovley, D. R. ( 2004a; ). Comparison of 16s rRNA, nifD, recA, gyrB, rpoB, and fusA genes within the family Geobacteraceae fam. nov. Int J Syst Evol Microbiol 54, 1591–1599.[CrossRef]
    [Google Scholar]
  14. Holmes, D. E., Nevin, K. P. & Lovley, D. R. ( 2004b; ). In situ expression of nifD in Geobacteraceae in subsurface sediments. Appl Environ Microbiol 70, 7251–7259.[CrossRef]
    [Google Scholar]
  15. Holmes, D. E., Nevin, K. P., O'Neil, R. A., Ward, J. E., Adams, L. A., Woodard, T. L., Vrionis, H. A. & Lovley, D. R. ( 2005; ). Potential for quantifying expression of the Geobacteraceae citrate synthase gene to assess the activity of Geobacteraceae in the subsurface and on current-harvesting electrodes. Appl Environ Microbiol 71, 6870–6877.[CrossRef]
    [Google Scholar]
  16. Holmes, D. E., O'Neil, R. A., Vrionis, H. A., N'guessan, L. A., Ortiz-Bernad, I., Larrahondo, M. J., Adams, L. A., Ward, J. A., Nicoll, J. S. & other authors ( 2007; ). Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments. ISME J 1, 663–677.[CrossRef]
    [Google Scholar]
  17. Istok, J. D., Senko, J. M., Krumholz, L. R., Watson, D., Bogle, M. A., Peacock, A., Chang, Y. J. & White, D. C. ( 2004; ). In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer. Environ Sci Technol 38, 468–475.[CrossRef]
    [Google Scholar]
  18. Kim, B. C., Qian, X., Leang, C., Coppi, M. V. & Lovley, D. R. ( 2006; ). Two putative c-type multiheme cytochromes required for the expression of OmcB, an outer membrane protein essential for optimal Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol 188, 3138–3142.[CrossRef]
    [Google Scholar]
  19. Kovach, M. E., Elzer, P. H., Hill, D. S., Robertson, G. T., Farris, M. A., Roop, R. M., II & Peterson, K. M. ( 1995; ). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176.[CrossRef]
    [Google Scholar]
  20. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  21. Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L. & Pace, N. R. ( 1985; ). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82, 6955–6959.[CrossRef]
    [Google Scholar]
  22. Leang, C., Coppi, M. V. & Lovley, D. R. ( 2003; ). OmcB, a c-type polyheme cytochrome, involved in Fe(III) reduction in Geobacter sulfurreducens. J Bacteriol 185, 2096–2103.[CrossRef]
    [Google Scholar]
  23. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔ C t method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  24. Lloyd, J. R., Leang, C., Hodges Myerson, A. L., Coppi, M. V., Cuifo, S., Methe, B., Sandler, S. J. & Lovley, D. R. ( 2003; ). Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem J 369, 153–161.[CrossRef]
    [Google Scholar]
  25. Lovley, D. R. ( 2003; ). Cleaning up with genomics: applying microbiology to bioremediation. Nat Rev Microbiol 1, 35–44.[CrossRef]
    [Google Scholar]
  26. Lovley, D. R. & Phillips, E. J. P. ( 1986; ). Organic matter mineralization with the reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51, 683–689.
    [Google Scholar]
  27. Lovley, D. R. & Phillips, E. J. P. ( 1988; ). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54, 1472–1480.
    [Google Scholar]
  28. Lovley, D. R., Phillips, E. J. P., Gorby, Y. A. & Landa, E. R. ( 1991; ). Microbial reduction of uranium. Nature 350, 413–416.[CrossRef]
    [Google Scholar]
  29. Lovley, D. R., Phillips, E. J., Lonergan, D. J. & Widman, P. K. ( 1995; ). Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol 61, 2132–2138.
    [Google Scholar]
  30. Lovley, D. R., Mahadevan, R. & Nevin, K. ( 2008; ). Systems biology approach to bioremediation with extracellular electron transfer. In Microbial Biodegradation: Genomics and Molecular Biology, pp. 71–96. Edited by E. Diaz. Norwich, UK: Horizon Scientific Press.
  31. Luo, W., Wu, W. M., Yan, T., Criddle, C. S., Jardine, P. M., Zhou, J. & Gu, B. ( 2007; ). Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition. Appl Microbiol Biotechnol 77, 713–721.[CrossRef]
    [Google Scholar]
  32. Mahadevan, R., Bond, D. R., Butler, J. E., Esteve-Nuñez, A., Coppi, M. V., Palsson, B. O., Schilling, C. H. & Lovley, D. R. ( 2006; ). Characterization of metabolism in the Fe(III)-reducing organism Geobacter sulfurreducens by constraint-based modeling. Appl Environ Microbiol 72, 1558–1568.[CrossRef]
    [Google Scholar]
  33. Mehta, T., Childers, S. E., Glaven, R., Lovley, D. R. & Mester, T. ( 2006; ). A putative multicopper protein secreted by an atypical type II secretion system involved in the reduction of insoluble electron acceptors in Geobacter sulfurreducens. Microbiology 152, 2257–2264.[CrossRef]
    [Google Scholar]
  34. Methé, B. A., Nelson, K. E., Eisen, J. A., Paulsen, I. T., Nelson, W., Heidelberg, J. F., Wu, D., Wu, M., Ward, N. & other authors ( 2003; ). Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science 302, 1967–1969.[CrossRef]
    [Google Scholar]
  35. N'Guessan, A. L., Vrionis, H. A., Resch, C. T., Long, P. E. & Lovley, D. R. ( 2008; ). Sustained removal of uranium from contaminated groundwater following stimulation of dissimilatory metal reduction. Environ Sci Technol 42, 2999–3004.[CrossRef]
    [Google Scholar]
  36. North, N. N., Dollhopf, S. L., Petrie, L., Istok, J. D., Balkwill, D. L. & Kostka, J. E. ( 2004; ). Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate. Appl Environ Microbiol 70, 4911–4920.[CrossRef]
    [Google Scholar]
  37. Oh, M. K., Rohlin, L., Kao, K. C. & Liao, J. C. ( 2002; ). Global expression profiling of acetate-grown Escherichia coli. J Biol Chem 277, 13175–13183.[CrossRef]
    [Google Scholar]
  38. O'Neil, R. A., Holmes, D. E., Coppi, M. V., Adams, L. A., Larrahondo, M. J., Ward, J. E., Nevin, K. P., Woodard, T. L., Vrionis, H. A. & other authors ( 2008; ). Gene transcript analysis of assimilatory iron limitation in Geobacteraceae during groundwater bioremediation. Environ Microbiol 10, 1218–1230.[CrossRef]
    [Google Scholar]
  39. Petrie, L., North, N. N., Dollhopf, S. L., Balkwill, D. L. & Kostka, J. E. ( 2003; ). Enumeration and characterization of iron(III)-reducing microbial communities from acidic subsurface sediments contaminated with uranium(VI). Appl Environ Microbiol 69, 7467–7479.[CrossRef]
    [Google Scholar]
  40. Risso, C., Van Dien, S. J., Orloff, A., Lovley, D. R. & Coppi, M. V. ( 2008; ). Elucidation of an alternate isoleucine biosynthesis pathway in Geobacter sulfurreducens. J Bacteriol 190, 2266–2274.[CrossRef]
    [Google Scholar]
  41. Rozen, S. & Skaletsky, H. ( 2000; ). Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132, 365–386.
    [Google Scholar]
  42. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  43. Sanford, R. A., Wu, Q., Sung, Y., Thomas, S. H., Amos, B. K., Prince, E. K. & Loffler, F. E. ( 2007; ). Hexavalent uranium supports growth of Anaeromyxobacter dehalogenans and Geobacter spp. with lower than predicted biomass yields. Environ Microbiol 9, 2885–2893.[CrossRef]
    [Google Scholar]
  44. Schink, B. ( 1984; ). Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds. Arch Microbiol 137, 33–41.[CrossRef]
    [Google Scholar]
  45. Schloss, P. D. & Handelsman, J. ( 2005; ). Introducing dotur, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71, 1501–1506.[CrossRef]
    [Google Scholar]
  46. Segura, D., Mahadevan, R., Juarez, K. & Lovley, D. R. ( 2008; ). Computational and experimental analysis of redundancy in the central metabolism of Geobacter sulfurreducens. PLOS Comput Biol 4, e36 [CrossRef]
    [Google Scholar]
  47. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. & Klenk, D. C. ( 1985; ). Measurement of protein using bicinchoninic acid. Anal Biochem 150, 76–85.[CrossRef]
    [Google Scholar]
  48. Swofford, D. L. ( 1998; ). paup*: Phylogenetic analysis using parsimony (*and other methods), version 4. Sunderland, MA: Sinauer Associates.
  49. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  50. Vrionis, H. A., Anderson, R. T., Ortiz-Bernad, I., O'Neill, K. R., Resch, C. T., Peacock, A. D., Dayvault, R., White, D. C., Long, P. E. & Lovley, D. R. ( 2005; ). Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl Environ Microbiol 71, 6308–6318.[CrossRef]
    [Google Scholar]
  51. Yan, B., Methe, B. A., Lovley, D. R. & Krushkal, J. ( 2004; ). Computational prediction of conserved operons and phylogenetic footprinting of transcription regulatory elements in the metal-reducing bacterial family Geobacteraceae. J Theor Biol 230, 133–144.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/017244-0
Loading
/content/journal/micro/10.1099/mic.0.2008/017244-0
Loading

Data & Media loading...

vol. , part 9, pp. 2589 - 2599

Primers used for quantitative real-time PCR [ PDF] (18 kb)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error