1887

Abstract

PR1 (PR1) exhibits pH-dependent nickel (Ni) tolerance, with lower Ni toxicity observed at pH 5 than at pH 7. The Ni tolerance mechanism in PR1 is currently unknown, and traditional mechanisms of Ni resistance do not appear to be present. Therefore, 2D gel electrophoresis was used to examine changes in protein expression in PR1 with and without Ni (3.4 mM) at pH 5 and 7. Proteins with both a statistically significant and at least a twofold difference in expression level between conditions (pH, Ni) were selected and identified using MALDI-TOF-MS or LC-MS. Results showed increased expression of proteins involved in cell shape and membrane composition at pH 5 compared with pH 7. Scanning electron microscopy indicated elongated cells at pH 5 and 6 compared with pH 7 in the absence of Ni. Fatty acid methyl ester analysis showed a statistically significant difference in the percentages of long- and short-chain fatty acids at pH 5 and 7. These findings suggest that changes in membrane structure and function may be involved in the ability of PR1 to grow at higher concentrations of Ni at pH 5 than at pH 7.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/017178-0
2008-12-01
2020-08-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/12/3813.html?itemId=/content/journal/micro/10.1099/mic.0.2008/017178-0&mimeType=html&fmt=ahah

References

  1. Adriano D. C.. 2001; Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals , 2nd edn. New York: Springer;
    [Google Scholar]
  2. Altincicek B., Kollas A. K., Eberl M., Wiesner J., Sanderbrand S., Hintz M., Beck E., Jomaa H.. 2001; LytB, a novel gene of the 2- C-methyl-d-erythritol 4-phosphate pathway of isoprenoid biosynthesis in Escherichia coli. FEBS Lett499:37–40
    [Google Scholar]
  3. Berggren K., Chernokalskaya E., Steinberg T. H., Kemper C., Lopez M. F., Diwu Z., Haugland R. P., Patton W. F.. 2000; Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis21:2509–2521
    [Google Scholar]
  4. Bradford M. M.. 1976; A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254
    [Google Scholar]
  5. Brush M.. 1998; Laid out flat: mini horizontal electrophoresis devices. Scientist12:16–22
    [Google Scholar]
  6. Bury-Moné S., Thiberge J. M., Contreras M., Maitournam A., Labigne A., Reuse H. D.. 2004; Responsiveness to acidity via metal ion regulators mediates virulence in the gastric pathogen Helicobacter pylori. Mol Microbiol53:623–638
    [Google Scholar]
  7. Caldas T. D., El Yangoubi A., Richarme G.. 1998; Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem273:11478–11482
    [Google Scholar]
  8. Chamberlain N. R., Mehrtens B. G., Xiong Z., Kapral F. A., Boardman J. L., Rearick J. I.. 1991; Correlation of carotenoid production, decreased membrane fluidity, and resistance to oleic acid killing in Staphylococcus aureus 18Z. Infect Immun59:4332–4337
    [Google Scholar]
  9. Cobet A. B., Jones G. E., Albright J., Simon H., Wirsen C.. 1971; The effect of nickel on a marine bacterium: fine structure of Arthrobacter marinus. J Gen Microbiol66:185–196
    [Google Scholar]
  10. Conway B. A., Greenberg E. P.. 2002; Quorum-sensing signals and quorum-sensing genes in Burkholderia vietnamiensis. J Bacteriol184:1187–1191
    [Google Scholar]
  11. Dennis J. J., Zylstra G. J.. 1998; Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl Environ Microbiol64:2710–2715
    [Google Scholar]
  12. Deshusses J. M. P., Burgess J. A., Scherf A., Wenger Y., Walter N., Converset V., Paesano S., Corthals G. L., Hochstrasser D. F., Sanchez J. C.. 2003; Exploitation of specific properties of trifluoroethanol for extraction and separation of membrane proteins. Proteomics3:1418–1424
    [Google Scholar]
  13. Dusenbery D. B.. 1998; Fitness landscapes for effects of shape on chemotaxis and other behaviors of bacteria. J Bacteriol180:5978–5983
    [Google Scholar]
  14. Ferianc P., Farewell A., Nystrom T.. 1998; The cadmium-stress stimulon of Escherichia coli K-12. Microbiology144:1045–1050
    [Google Scholar]
  15. Fierer N., Jackson R. B.. 2006; The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A103:626–631
    [Google Scholar]
  16. Formstone A., Errington J.. 2005; A magnesium-dependent mreB null mutant: implications for the role of mreB in Bacillus subtilis. Mol Microbiol55:1646–1657
    [Google Scholar]
  17. Fozo E. M., Quivey R. G. Jr. 2004; Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Appl Environ Microbiol70:929–936
    [Google Scholar]
  18. Gaboriaud F., Bailet S., Dague E., Jorand F.. 2005; Surface structure and nanomechanical properties of Shewanella putrefaciens bacteria at two pH values (4 and 10) determined by atomic force microscopy. J Bacteriol187:3864–3868
    [Google Scholar]
  19. Geslin C., Llanos J., Prieur D., Jeanthon C.. 2001; The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. Res Microbiol152:901–905
    [Google Scholar]
  20. Guha C., Mookerjee A.. 1979; Effect of nickel on macromolecular synthesis in Escherichia coli K-12. Nucleus22:45–47
    [Google Scholar]
  21. Gygi S. P., Corthal G. L., Zhang Y., Rochon Y., Aebersold R.. 2000; Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A97:9390–9395
    [Google Scholar]
  22. Hausinger R. P.. 1993; Biochemistry of Nickel , 2nd edn. New York: Plenum;
    [Google Scholar]
  23. Hommais F., Laurent-Winter C., Labas V., Krin E., Tendeng C., Soutourina O., Danchin A., Bertin P.. 2002; Effect of mild acid pH on the functioning of bacterial membranes in Vibrio cholerae. Proteomics2:571–579
    [Google Scholar]
  24. Hornbaek T., Jakibsen M., Dynesen J., Nielson A. K.. 2004; Global transcription profiles and intracellular pH regulation measured in Bacillus licheniformis upon external pH upshifts. Arch Microbiol182:467–474
    [Google Scholar]
  25. Kang D., Gho Y. S., Suh M., Kang C.. 2002; Highly sensitive and fast protein detection with Coomassie brilliant blue in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bull Korean Chem Soc23:1511–1512
    [Google Scholar]
  26. Kannenberg E. L., Poralla K.. 1999; Hopanoid biosynthesis and function in bacteria. Naturwissenschaften86:168–176
    [Google Scholar]
  27. Konings W. N., Albers S. V., Koning S., Driessen A. J. M.. 2002; The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie van Leeuwenhoek81:61–72
    [Google Scholar]
  28. Kruse T., Bork-Jensen J., Gerdes K.. 2005; The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol Microbiol55:78–89
    [Google Scholar]
  29. Kudlicki W., Coffman A., Kramer G., Hardesty B.. 1997; Renaturation of rhodanese by translational elongation factor (EF) Tu. Protein refolding by EF-Tu flexing. J Biol Chem272:32206–32210
    [Google Scholar]
  30. Lanne B., Panfilov O.. 2005; Protein staining influences the quality of mass spectra obtained by peptide mass fingerprinting after separation on 2-D gels. A comparison of staining with coomassie brilliant blue and Sypro Ruby. J Proteome Res4:175–179
    [Google Scholar]
  31. Leaphart A. B., Thompson D. K., Huang K., Aim E., Wan X. F., Arkin A., Brown S. D., Wu L., Yan T.. other authors 2006; Transcriptome profiling of Shewanella oneidensis gene expression following exposure to acidic and alkaline pH. J Bacteriol188:1633–1642
    [Google Scholar]
  32. Lee S. Y.. 1996; Bacterial polyhydroxyalkanoates. Biotechnol Bioeng49:1–14
    [Google Scholar]
  33. Len A. C. L., Harty D. W. S., Jacques N. A.. 2004; Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance. Microbiology150:1339–1351
    [Google Scholar]
  34. Lewenza S., Conway B., Greenberg E. P., Sokol P. A.. 1999; Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J Bacteriol181:748–756
    [Google Scholar]
  35. Lodish H., Berk A., Zipursky S. L., Matsudaira P., Baltimore D., Darnell J. E.. 2000; Molecular Cell Biology , 4th edn. New York: W. H. Freeman;
    [Google Scholar]
  36. Lutter E., Lewenza S., Dennis J. J., Visser M. B., Sokol P. A.. 2001; Distribution of quorum-sensing genes in the Burkholderia cepacia complex. Infect Immun69:4661–4666
    [Google Scholar]
  37. Malott R. J., Sokol P. A.. 2003; Cell-cell signaling mechanisms of the Burkholderia cepacia complex. Recent Res Dev Infect Immun1:277–292
    [Google Scholar]
  38. Malott R. J., Sokol P. A.. 2007; Expression of the bviIR and cepIR quorum-sensing systems of Burkholderia vietnamiensis. J Bacteriol189:3006–3016
    [Google Scholar]
  39. Marrero J., Auling G., Coto O., Nies D. H.. 2006; High-level resistance to cobalt and nickel but probably no transenvelope efflux: metal resistance in the Cuban Serratia marcescens strain C-1. Microb Ecol53:123–133
    [Google Scholar]
  40. Miller M. B., Bassler B. L.. 2001; Quorum sensing in bacteria. Annu Rev Microbiol55:165–199
    [Google Scholar]
  41. Mirete S., de Figueras C. G., González-Pastor J. E.. 2007; Novel nickel-resistance genes from the rhizosphere metagenome of acid mine drainage-adapted plants. Appl Environ Microbiol73:6001–6011
    [Google Scholar]
  42. Molloy M. P., Herbert B. R., Walsh B. J., Tyler M. I., Traini M., Sanchez J. C., Hochstrasser D. F., Williams K. L., Gooley A. A.. 1998; Extraction of membrane proteins by differential solubilization for separation using two-dimensional gel electrophoresis. Electrophoresis19:837–844
    [Google Scholar]
  43. Müller D. J., Engel A.. 1999; Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy. J Mol Biol285:1347–1351
    [Google Scholar]
  44. Nies D. H.. 2003; Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev27:313–319
    [Google Scholar]
  45. Nriagu J. O.. 1980; Global cycle and properties of nickel. In Nickel in the Environment pp1–26 Edited by Nriagu J. O.. New York: Wiley;
    [Google Scholar]
  46. Park J.-H., Hwang I.-G., Kim J.-W., Lee S.-O., Conway B., Greenberg E. P., Lee K.. 2001; Characterization of quorum-sensing signaling molecules produced by Burkholderia cepacia G4. J Microbiol Biotechnol11:804–811
    [Google Scholar]
  47. Proctor J., Woodell S. R. J.. 1975; The ecology of serpentine soils. Adv Ecol Res9:255–366
    [Google Scholar]
  48. Putra S. R., Disch A., Bravo J. M., Rohmer M.. 1998; Distribution of mevalonate and glyceraldehyde 3-phosphate/pyruvate routes for isoprenoid biosynthesis in some gram-negative bacteria and mycobacteria. FEMS Microbiol Lett164:169–175
    [Google Scholar]
  49. Quivey R. G. Jr, Faustoferri R., Monahan K., Marquis R.. 2000; Shifts in membrane fatty acid profiles associated with acid adaptations of Streptococcus mutans. FEMS Microbiol Lett189:89–92
    [Google Scholar]
  50. Sabirova J. S., Ferrer M., Regenhardt D., Timmis K. N., Golyshin P. N.. 2006; Proteomic insights into metabolic adaptations in Alcanivorax borkumensis induced by alkane utilization. J Bacteriol188:3763–3773
    [Google Scholar]
  51. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  52. Sigler K., Chaloupka J., Brozmanová J., Stadler N., Höfer M.. 1999; Oxidative stress in microorganisms. I. Microbial vs. higher cells – damage and defenses in relation to cell aging and death. Folia Microbiol (Praha)44:587–624
    [Google Scholar]
  53. Simkiss K., Taylor M. G.. 1995; Transport of metals across membranes. In Metal Speciation and Bioavailability in Aquatic Systems pp2–44 Edited by Tessier A., Turner D. R. Chichester: Wiley;
    [Google Scholar]
  54. Singh R., Beriault R., Middaugh J., Hamel R., Chemier D., Appanna V. D., Kalyuzhuyi S.. 2005; Aluminum-tolerant Pseudomonas fluorescens: ROS toxicity and enhanced NADPH production. Extremophiles9:367–373
    [Google Scholar]
  55. Storch J., Schachter D.. 1984; Dietary induction of acyl chain desaturases alters the lipid composition and fluidity of rat hepatocyte plasma membranes. Biochemistry23:1165–1170
    [Google Scholar]
  56. Thanbichler M., Wang S. C., Shapiro L.. 2005; The bacterial nucleoid: a highly organized and dynamic structure. J Cell Biochem96:506–521
    [Google Scholar]
  57. Tian J., He A., Lawrence A. G., Liu P., Watson N., Sinskey A. J., Stubbe J.. 2005; Analysis of transient polyhydroxybutyrate production in Wautersia eutropha H16 by quantitative western analysis and transmission electron microscopy. J Bacteriol187:3825–3832
    [Google Scholar]
  58. Todt J. C., Rocque W. J., McGroarty E. J.. 1992; Effects of pH on bacterial porin function. Biochemistry31:10471–10478
    [Google Scholar]
  59. Van Nostrand J. D., Sowder A., Bertsch P. M., Morris P. J.. 2005; Effect of pH on the toxicity of nickel and other divalent metals to Burkholderia cepacia PR1301. Environ Toxicol Chem24:2742–2750
    [Google Scholar]
  60. Van Nostrand J. D., Khijniak T. V., Gentry T. J., Novak M. T., Sowder A. G., Zhou J. Z., Bertsch P. M., Morris P. J.. 2007a; Isolation and characterization of four Gram-positive nickel-tolerant microorganisms from contaminated sediments. Microb Ecol53:670–682
    [Google Scholar]
  61. Van Nostrand J. D., Khijniak T. J., Neely B., Sattar M. A., Sowder A. G., Mills G., Bertsch P. M., Morris P. J.. 2007b; The use of hydroxylapatite to reduce the toxicity of nickel and uranium to Burkholderia vietnamiensis PR1301. Environ Sci Technol41:1877–1882
    [Google Scholar]
  62. Wieczorek R., Pries A., Steinbüchel A., Mayer F.. 1995; Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J Bacteriol177:2425–2435
    [Google Scholar]
  63. Wilkins J. C., Homer K. A., Beighton D.. 2001; Altered protein expression of Streptococcus oralis cultured at low pH revealed by two-dimensional gel electrophoresis. Appl Environ Microbiol67:3396–3405
    [Google Scholar]
  64. Ybarra G. R., Webb R.. 1998; Differential responses of GroEL and metallothionein genes to divalent metal cations and the oxyanions of arsenic in the cyanobacterium Synechococcus sp. strain PCC7942. In Proceedings of the 1998 Conference on Hazardous Waste Research Snowbird, UT, USA: 18–21 May 1998
    [Google Scholar]
  65. York G. M., Stubbe J., Sinskey A. J.. 2001a; New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting the synthesis of polyhydroxybutyrate. J Bacteriol183:2394–2397
    [Google Scholar]
  66. York G. M., Junker B. H., Stubbe J., Sinskey A. J.. 2001b; Accumulation of the PhaP phasin of Ralstonia eutropha is dependent on production of polyhydroxybutyrate in cells. J Bacteriol183:4217–4226
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/017178-0
Loading
/content/journal/micro/10.1099/mic.0.2008/017178-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error