Ambient pH signalling in the yeast involves YlRim23p/PalC, which interacts with Snf7p/Vps32p, but does not require the long C terminus of YlRim9p/PalI Free

Abstract

A conserved ambient pH signal transduction pathway has been evidenced in both ascomycetous yeasts and filamentous fungi, called the Rim or Pal pathway, respectively. However, closely related PalC orthologues are found only in and in filamentous fungi, where the Rim9p/PalI factor has a much longer C-terminal tail than in other yeasts. We show here that, like mutants, a Δ mutant has a less extreme phenotype than other mutants of the pathway, whereas mutants in and reportedly exhibit a tight Rim phenotype. Deletion of the long C-terminal tail of YlRim9p/PalI had no phenotypic effect on ambient pH signalling. We also show that the PalC orthologue, named YlRim23p, is absolutely required for the alkaline pH response. Its only interactant identified in a genome-wide two-hybrid screen is YlSnf7/Vps32p, confirming the link between the Rim and the Vps pathways. YlRim13p and YlRim20p both interact with YlSnf7/Vps32p but not with YlRim23p. The long C-terminal tail of YlRim9p/PalI interacts neither with YlRim23p nor with YlSnf7/Vps32p. These results show that YlRim23p is a bona fide component of the Rim pathway in and that it participates in the complexes linking pH signalling and endocytosis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/017046-0
2008-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/6/1668.html?itemId=/content/journal/micro/10.1099/mic.0.2008/017046-0&mimeType=html&fmt=ahah

References

  1. Arechiga-Carvajal E. T., Ruiz-Herrera J. 2005; The RIM101 / pacC homologue from the basidiomycete Ustilago maydis is functional in multiple pH-sensitive phenomena. Eukaryot Cell 4:999–1008
    [Google Scholar]
  2. Arst H. N. Jr, Bignell E., Tilburn J. 1994; Two new genes involved in signalling ambient pH in Aspergillus nidulans . Mol Gen Genet 245:787–790
    [Google Scholar]
  3. Baek Y. U., Martin S. J., Davis D. A. 2006; Evidence for novel pH-dependent regulation of Candida albicans Rim101, a direct transcriptional repressor of the cell wall beta-glycosidase Phr2. Eukaryot Cell 5:1550–1559
    [Google Scholar]
  4. Barwell K. J., Boysen J. H., Xu W., Mitchell A. P. 2005; Relationship of DFG16 to the Rim101p pH response pathway in Saccharomyces cerevisiae and Candida albicans . Eukaryot Cell 4:890–899
    [Google Scholar]
  5. Bignell E., Negrete-Urtasun S., Calcagno A. M., Haynes K., Arst H. N. Jr, Rogers T. 2005; The Aspergillus pH-responsive transcription factor PacC regulates virulence. Mol Microbiol 55:1072–1084
    [Google Scholar]
  6. Blanchin-Roland S., Da Costa G., Gaillardin C. 2005; ESCRT-I components of the endocytic machinery are required for Rim101-dependent ambient pH regulation in the yeast Yarrowia lipolytica . Microbiology 151:3627–3637
    [Google Scholar]
  7. Boysen J. H., Mitchell A. P. 2006; Control of Bro1-domain protein Rim20 localization by external pH, ESCRT machinery, and the S. cerevisiae Rim101 pathway. Mol Biol Cell 17:1344–1353
    [Google Scholar]
  8. Calcagno-Pizarelli A. M., Negrete-Urtasun S., Denison S. H., Rudnicka J. D., Bussink H. J., Múnera-Huertas T., Stanton L., Hervás-Aguilar A., Espeso E. A. other authors 2007; Establishment of the ambient pH signaling complex in Aspergillus nidulans : PalI assists plasma membrane localization of PalH. Eukaryot Cell 6:2365–2375
    [Google Scholar]
  9. Caracuel Z., Casanova C., Roncero M. I., Di Pietro A., Ramos J. 2003; pH response transcription factor PacC controls salt stress tolerance and expression of the P-Type Na+-ATPase Ena1 in Fusarium oxysporum . Eukaryot Cell 2:1246–1252
    [Google Scholar]
  10. Castrejon F., Gomez A., Sanz M., Duran A., Roncero C. 2006; The RIM101 pathway contributes to yeast cell wall assembly and its function becomes essential in the absence of mitogen-activated protein kinase Slt2p. Eukaryot Cell 5:507–517
    [Google Scholar]
  11. Cornet M., Bidard F., Schwarz P., Da Costa G., Blanchin-Roland S., Dromer F., Gaillardin C. 2005; Deletions of endocytic components VPS28 and VPS32 affect growth at alkaline pH and virulence through both RIM101-dependent and RIM101-independent pathways in Candida albi cans. Infect Immun 73:7977–7987
    [Google Scholar]
  12. Davis D. 2003; Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr Genet 44:1–7
    [Google Scholar]
  13. Denison S. H., Negrete-Urtasun S., Mingot J. M., Tilburn J., Mayer W. A., Goel A., Espeso E. A., Penalva M. A., Arst H. N. Jr 1998; Putative membrane components of signal transduction pathways for ambient pH regulation in Aspergillus and meiosis in Saccharomyces are homologous. Mol Microbiol 30:259–264
    [Google Scholar]
  14. Dujon B., Sherman D., Fischer G., Durrens P., Casaregola S., Lafontaine I., de Montigny J., Marck C., Neuvéglise C. other authors 2004; Genome evolution in yeasts. Nature 430:35–44
    [Google Scholar]
  15. El Barkani A., Kurzai O., Fonzi W. A., Ramon A., Porta A., Frosch M., Muhlschlegel F. A. 2000; Dominant active alleles of RIM101 ( PRR2 ) bypass the pH restriction on filamentation of Candida albicans . Mol Cell Biol 20:4635–4647
    [Google Scholar]
  16. Fickers P., Le Dall M. T., Gaillardin C., Thonart P., Nicaud J. M. 2003; New disruption cassettes for rapid gene disruption and marker rescue in the yeast Yarrowia lipolytica . J Microbiol Methods 55:727–737
    [Google Scholar]
  17. Fields S., Song O. 1989; A novel genetic system to detect protein-protein interactions. Nature 340:245–246
    [Google Scholar]
  18. Galindo A., Hervas-Aguilar A., Rodriguez-Galan O., Vincent O., Arst H. N. Jr, Tilburn J., Penalva M. A. 2007; PalC, one of two Bro1 domain proteins in the fungal pH signalling pathway, localizes to cortical structures and binds Vps32. Traffic 8:1346–1364
    [Google Scholar]
  19. Gonzalez-Lopez C. I., Szabo R., Blanchin-Roland S., Gaillardin C. 2002; Genetic control of extracellular protease synthesis in the yeast Yarrowia lipolytica . Genetics 160:417–427
    [Google Scholar]
  20. Gonzalez-Lopez C. I., Ortiz-Castellanos L., Ruiz-Herrera J. 2006; The ambient pH response Rim pathway in Yarrowia lipolytica : identification of YlRIM9 and characterization of its role in dimorphism. Curr Microbiol 53:8–12
    [Google Scholar]
  21. Hayashi M., Fukuzawa T., Sorimachi H., Maeda T. 2005; Constitutive activation of the pH-responsive Rim101 pathway in yeast mutants defective in late steps of the MVB/ESCRT pathway. Mol Cell Biol 25:9478–9490
    [Google Scholar]
  22. Herranz S., Rodriguez J. M., Bussink H. J., Sanchez-Ferrero J. C., Arst H. N. Jr, Penalva M. A., Vincent O. 2005; Arrestin-related proteins mediate pH signaling in fungi. Proc Natl Acad Sci U S A 102:12141–12146
    [Google Scholar]
  23. Hervas-Aguilar A., Rodriguez J. M., Tilburn J., Arst H. N. Jr, Penalva M. A. 2007; Evidence for the direct involvement of the proteasome in the proteolytic processing of the Aspergillus nidulans zinc-finger transcription factor PACC. J Biol Chem 282:34735–34747
    [Google Scholar]
  24. Hurley J. H., Emr S. D. 2006; The ESCRT complexes: structure and mechanism of a membrane-trafficking network. Annu Rev Biophys Biomol Struct 35:277–298
    [Google Scholar]
  25. Ito T., Chiba T., Ozawa R., Yoshida M., Hattori M., Sakaki Y. 2001; A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A 98:4569–4574
    [Google Scholar]
  26. James P., Halladay J., Craig E. A. 1996; Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436
    [Google Scholar]
  27. Kabani M., Boisrame A., Beckerich J. M., Gaillardin C. 2000; A highly representative two-hybrid genomic library for the yeast Yarrowia lipolytica . Gene 241:309–315
    [Google Scholar]
  28. Kullas A. L., Li M., Davis D. A. 2004; Snf7p, a component of the ESCRT-III protein complex, is an upstream member of the RIM101 pathway in Candida albicans . Eukaryot Cell 3:1609–1618
    [Google Scholar]
  29. Kullas A. L., Martin S. J., Davis D. 2007; Adaptation to environmental pH: integrating the Rim101 and calcineurin signal transduction pathways. Mol Microbiol 66:858–871
    [Google Scholar]
  30. Lamb T. M., Mitchell A. P. 2003; The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae . Mol Cell Biol 23:677–686
    [Google Scholar]
  31. Lambert M., Blanchin-Roland S., Le Louedec F., Lepingle A., Gaillardin C. 1997; Genetic analysis of regulatory mutants affecting synthesis of extracellular proteinases in the yeast Yarrowia lipolytica : identification of a RIM101/pacC homolog. Mol Cell Biol 17:3966–3976
    [Google Scholar]
  32. Li W., Mitchell A. P. 1997; Proteolytic activation of Rim1p, a positive regulator of yeast sporulation and invasive growth. Genetics 145:63–73
    [Google Scholar]
  33. Li M., Martin S. J., Bruno V. M., Mitchell A. P., Davis D. A. 2004; Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs. Eukaryot Cell 3:741–751
    [Google Scholar]
  34. Lotz H., Sohn K., Brunner H., Muhlschlegel F. A., Rupp S. 2004; RBR1, a novel pH-regulated cell wall gene of Candida albicans , is repressed by RIM101 and activated by NRG1 . Eukaryot Cell 3:776–784
    [Google Scholar]
  35. Mitchell B. M., Wu T. G., Jackson B. E., Wilhelmus K. R. 2007; Candida albicans strain-dependent virulence and Rim13p-mediated filamentation in experimental keratomycosis. Invest Ophthalmol Vis Sci 48:774–780
    [Google Scholar]
  36. Muhlschlegel F. A., Fonzi W. A. 1997; PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol Cell Biol 17:5960–5967
    [Google Scholar]
  37. Ogrydziak D. M. 1993; Yeast extracellular proteases. Crit Rev Biotechnol 13:1–55
    [Google Scholar]
  38. Ogrydziak D. M., Demain A. L., Tannenbaum S. R. 1977; Regulation of extracellular protease production in Candida lipolytica . Biochim Biophys Acta 497:525–538
    [Google Scholar]
  39. Penalva M. A., Arst H. N. Jr 2002; Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 66:426–446
    [Google Scholar]
  40. Penalva M. A., Arst H. N. Jr 2004; Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu Rev Microbiol 58:425–451
    [Google Scholar]
  41. Penas M. M., Hervas-Aguilar A., Munera-Huertas T., Reoyo E., Penalva M. A., Arst H. N. Jr, Tilburn J. 2007; Further characterization of the signaling proteolysis step in the Aspergillus nidulans pH signal transduction pathway. Eukaryot Cell 6:960–970
    [Google Scholar]
  42. Platara M., Ruiz A., Serrano R., Palomino A., Moreno F., Arino J. 2006; The transcriptional response of the yeast Na+-ATPase ENA1 gene to alkaline stress involves three main signaling pathways. J Biol Chem 281:36632–36642
    [Google Scholar]
  43. Ramon A. M., Fonzi W. A. 2003; Diverged binding specificity of Rim101p, the Candida albicans ortholog of PacC. Eukaryot Cell 2:718–728
    [Google Scholar]
  44. Rothfels K., Tanny J. C., Molnar E., Friesen H., Commisso C., Segall J. 2005; Components of the ESCRT pathway, DFG16 , and YGR122w are required for Rim101 to act as a corepressor with Nrg1 at the negative regulatory element of the DIT1 gene of Saccharomyces cerevisiae . Mol Cell Biol 25:6772–6788
    [Google Scholar]
  45. Su S. S., Mitchell A. P. 1993; Identification of functionally related genes that stimulate early meiotic gene expression in yeast. Genetics 133:67–77
    [Google Scholar]
  46. Tilburn J., Sanchez-Ferrero J. C., Reoyo E., Arst H. N. Jr, Penalva M. A. 2005; Mutational analysis of the pH signal transduction component PalC of Aspergillus nidulans supports distant similarity to BRO1 domain family members. Genetics 171:393–401
    [Google Scholar]
  47. Tréton B., Blanchin-Roland S., Lambert M., Lepingle A., Gaillardin C. 2000; Ambient pH signalling in ascomycetous yeasts involves homologues of the Aspergillus nidulans genes palF and paIH . Mol Gen Genet 263:505–513
    [Google Scholar]
  48. Uetz P., Giot L., Cagney G., Mansfield T. A., Judson R. S., Knight J. R., Lockshon D., Narayan V., Srinivasen M. other authors 2000; A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae . Nature 403:623–627
    [Google Scholar]
  49. Villar C. C., Kashleva H., Nobile C. J., Mitchell A. P., Dongari-Bagtzoglou A. 2007; Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect Immun 75:2126–2135
    [Google Scholar]
  50. Vincent O., Rainbow L., Tilburn J., Arst H. N. Jr, Penalva M. A. 2003; YPXL/I is a protein interaction motif recognized by aspergillus PalA and its human homologue, AIP1/Alix. Mol Cell Biol 23:1647–1655
    [Google Scholar]
  51. Xu W., Mitchell A. P. 2001; Yeast PalA/AIP1/Alix homolog Rim20p associates with a PEST-like region and is required for its proteolytic cleavage. J Bacteriol 183:6917–6923
    [Google Scholar]
  52. Xu W., Smith F. J. Jr, Subaran R., Mitchell A. P. 2004; Multivesicular body-ESCRT components function in pH response regulation in Saccharomyces cerevisiae and Candida albicans . Mol Biol Cell 15:5528–5537
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/017046-0
Loading
/content/journal/micro/10.1099/mic.0.2008/017046-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed