1887

Abstract

A non-mycoparasitic restriction enzyme-mediated DNA integration (REMI) mutant of (R2427) contains two tandem plasmid copies integrated towards the 3′ end of an ORF. The predicted polypeptide (845 aa) exhibits high similarity with DNA-helicase proteins from other filamentous fungi and yeasts that play a role in mitochondrial DNA maintenance and repair. Disruption of the DNA helicase gene results in altered morphology, reduced growth rates and a concomitant loss in ability to mycoparasitize sclerotia of . In infection bioassays, R2427 exhibited sparse mycelial growth on the surface of live sclerotia, but no mycelia were detected inside the sclerotia. Conversely, R2427 readily colonized autoclaved sclerotia. Complementation of the mutant with wild-type restored normal mycelial growth and mycoparasitic capability, confirming a functional role in the host–pathogen interaction. The DNA helicase may maintain mitochondrial stability in response to reactive oxygen species, either produced endogenously within the mycoparasite, or exogenously from the sclerotial host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/017020-0
2008-06-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/6/1628.html?itemId=/content/journal/micro/10.1099/mic.0.2008/017020-0&mimeType=html&fmt=ahah

References

  1. Apel K., Hirt H.. 2004; Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol55:373–399
    [Google Scholar]
  2. BalhadÉre P. V., Foster A. J., Talbot N. J.. 1999; Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Mol Plant Microbe Interact12:129–142
    [Google Scholar]
  3. Bessler J. B., Torres J. Z., Zakian V. A.. 2001; The Pif1p subfamily of helicases: region-specific DNA helicases?. Trends Cell Biol11:60–65
    [Google Scholar]
  4. Boland G. J., Hall R.. 1994; Index of plant hosts of Sclerotinia sclerotiorum . Can J Plant Pathol16:93–108
    [Google Scholar]
  5. Budge S. P., Whipps J. M.. 2001; Potential for integrated control of Sclerotinia sclerotiorum in glasshouse lettuce using Coniothyrium minitans and reduced fungicide application. Phytopathology91:221–227
    [Google Scholar]
  6. Budge S. P., McQuilken M. P., Fenlon J. S., Whipps J. M.. 1995; Use of Coniothyrium minitans and Gliocladium virens for biological-control of Sclerotinia sclerotiorum in glasshouse lettuce. Biol Control5:513–522
    [Google Scholar]
  7. Challen M. P., Kerrigan R. W., Callac P.. 2003; A phylogenetic reconstruction and emendation of Agaricus section Duploannulatae . Mycologia95:61–73
    [Google Scholar]
  8. Chen C., Dickman M. B.. 2005; Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii . Proc Natl Acad Sci U S A102:3459–3464
    [Google Scholar]
  9. Doudican N. A., Song B. W., Shadel G. S., Doetsch P. W.. 2005; Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae . Mol Cell Biol25:5196–5204
    [Google Scholar]
  10. Escande A. R., Laich F. S., Pedraza M. V.. 2002; Field testing of honeybee-dispersed Trichoderma spp. to manage sunflower head rot ( Sclerotinia sclerotiorum . Plant Pathol51:346–351
    [Google Scholar]
  11. Felsenstein J.. 1993; phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  12. Foury F., Lahaye A.. 1987; Cloning and sequencing of the Pif gene involved in repair and recombination of yeast mitochondrial-DNA. EMBO J6:1441–1449
    [Google Scholar]
  13. Georgiou C. D., Tairis N., Polycratis A.. 2001; Production of beta-carotene by Sclerotinia sclerotiorum and its role in sclerotium differentiation. Mycol Res105:1110–1115
    [Google Scholar]
  14. Gerlagh M., Whipps J. M., Budge S. P., Goossen van de Geijn H. M.. 1996; Efficiency of isolates of Coniothyrium minitans as mycoparasites of Sclerotinia sclerotiorum , Sclerotium cepivorum and Botrytis cinerea on tomato stem pieces. Eur J Plant Pathol102:787–793
    [Google Scholar]
  15. Giczey G., Kerenyi Z., Fulop L., Hornok L.. 2001; Expression of cmg1 , an exo-beta-1,3-glucanase gene from Coniothyrium minitans , increases during sclerotial parasitism. Appl Environ Microbiol67:865–871
    [Google Scholar]
  16. Harmsen M. C., Schuren F. H. J., Moukha S. M., van Zuilen C. M., Punt P. J., Wessels J. G. H.. 1992; Sequence analysis of the glyceraldehyde-3-phosphate dehydrogenase genes from the basidiomycetes Schizophyllum commune , Phanerochaete chrysosporium and Agaricus bisporus . Curr Genet22:447–454
    [Google Scholar]
  17. Huang H. C., Hoes J. A.. 1976; Penetration and infection of Sclerotinia sclerotiorum by Coniothyrium minitans . Can J Bot54:406–410
    [Google Scholar]
  18. Huang H. C., Kokko E. G.. 1987; Ultrastructure of hyperparasitism of Coniothyrium minitans on sclerotia of Sclerotinia sclerotiorum . Can J Bot65:2483–2489
    [Google Scholar]
  19. Huang H. C., Bremer E., Hynes R. K., Erickson R. S.. 2000; Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused by Sclerotinia sclerotiorum . Biol Control18:270–276
    [Google Scholar]
  20. Ivessa A. S., Zhou J. Q., Zakian V. A.. 2000; The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell100:479–489
    [Google Scholar]
  21. Jones D., Watson D.. 1969; Parasitism and lysis by soil fungi of Sclerotinia sclerotiorum (Lib.) de Bary, a phytopathogenic fungus. Nature224:287–288
    [Google Scholar]
  22. Jones D., Gordon A. H., Bacon J. S. D.. 1974; Co-operative action by endo- and exo- β -(1→3)-glucanases from parasitic fungi in degradation of cell-wall glucans of Sclerotinia sclerotiorum (Lib) Bary. Biochem J140:47–55
    [Google Scholar]
  23. Jones E., Carpenter M., Fong D., Goldstein A., Thrush A., Crowhurst R., Stewart A.. 1999; Co-transformation of the sclerotial mycoparasite Coniothyrium minitans with hygromycin B resistance and beta-glucuronidase markers. Mycol Res103:929–937
    [Google Scholar]
  24. Kahmann R., Basse C.. 1999; REMI (Restriction Enzyme Mediated Integration) and its impact on the isolation of pathogenicity genes in fungi attacking plants. Eur J Plant Pathol105:221–229
    [Google Scholar]
  25. Li G. Q., Huang H. C., Acharya S. N.. 2003; Importance of pollen and senescent petals in the suppression of alfalfa blossom blight ( Sclerotinia sclerotiorum ) by Coniothyrium minitans . Biocontrol Sci Technol13:495–505
    [Google Scholar]
  26. Muthumeenakshi S., Sreenivasaprasad S., Rogers C. W., Challen M. P., Whipps J. M.. 2007; Analysis of cDNA transcripts from Coniothyrium minitans reveals a diverse array of genes involved in key processes during sclerotial mycoparasitism. Fungal Genet Biol44:1262–1284
    [Google Scholar]
  27. Nicholas K. B., Nicholas H. B. J., Deerfield D. W.. 1997; GeneDoc: analysis and visualization of genetic variation. EMBNEWS4:14
    [Google Scholar]
  28. O'Rourke T. W., Doudican N. A., Mackereth M. D., Doetsch P. W., Shadel G. S.. 2002; Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins. Mol Cell Biol22:4086–4093
    [Google Scholar]
  29. Punt P. J., Oliver R. P., Dingemanse M. A., Pouwels P. H., van den Hondel C. A. M. J. J.. 1987; Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli . Gene56:117–124
    [Google Scholar]
  30. Rogers C. W.. 2004; Molecular approaches towards the identification of pathogenicity genes in the mycoparasite Coniothyrium minitans PhD thesis University of Birmingham;245 pp
    [Google Scholar]
  31. Rogers C. W., Challen M. P., Green J. R., Whipps J. M.. 2004; Use of REMI and Agrobacterium -mediated transformation to identify pathogenicity mutants of the biocontrol fungus, Coniothyrium minitans . FEMS Microbiol Lett241:207–214
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Savoie J.-M., Largeteau M. L.. 2004; Hydrogen peroxide concentrations detected in Agaricus bisporus sporocarps and relation with their susceptibility to the pathogen Verticillium fungicola . FEMS Microbiol Lett237:311–315
    [Google Scholar]
  34. Schulz V. P., Zakian V. A.. 1994; The Saccharomyces Pif1 DNA helicase inhibits telomere elongation and de-novo telomere formation. Cell76:145–155
    [Google Scholar]
  35. Schuren F. H. J., Wessels J. G. H.. 1994; Highly efficient transformation of the homobasidiomycete Schizophyllum commune to phleomycin resistance. Curr Genet26:179–183
    [Google Scholar]
  36. Schuren F. H. J., Wessels J. G. H.. 1998; Expression of heterologous genes in Schizophyllum commune is often hampered by the formation of truncated transcripts. Curr Genet33:151–156
    [Google Scholar]
  37. Seong K., Hou Z. M., Tracy M., Kistler H. C., Xu J. R.. 2005; Random insertional mutagenesis identifies genes associated with virulence in the wheat scab fungus Fusarium graminearum . Phytopathology95:744–750
    [Google Scholar]
  38. Son D. O., Satsu H., Shimizu M.. 2005; Histidine inhibits oxidative stress- and TNF-alpha-induced interleukin-8 secretion in intestinal epithelial cells. FEBS Lett579:4671–4677
    [Google Scholar]
  39. Whipps J. M., Gerlagh M.. 1992; Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycol Res96:897–907
    [Google Scholar]
  40. Willetts H. J., Wong J. A. L.. 1980; The biology of Sclerotinia sclerotiorum , S. trifoliorum , and S. minor with emphasis on specific nomenclature. Bot Rev46:101–165
    [Google Scholar]
  41. Yakes F. M., Van Houten B.. 1997; Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A94:514–519
    [Google Scholar]
  42. Zhang D. H., Zhou B., Huang Y., Xu L. X., Zhou J. Q.. 2006; The human Pif1 helicase, a potential Escherichia coli RecD homologue, inhibits telomerase activity. Nucleic Acids Res34:1393–1404
    [Google Scholar]
  43. Zhou J. Q., Monson E. K., Teng S. C., Schulz V. P., Zakian V. A.. 2000; Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science289:771–774
    [Google Scholar]
  44. Zhou J.-Q., Qi H., Schulz V. P., Mateyak M. K., Monson E. K., Zakian V. A.. 2002; Schizosaccharomyces pombe pfh1+ encodes an essential 5′ to 3′ DNA helicase that is a member of the PIF1 subfamily of DNA helicases. Mol Biol Cell13:2180–2191
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/017020-0
Loading
/content/journal/micro/10.1099/mic.0.2008/017020-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error