1887

Abstract

Mycobacteriophage L5 is a temperate phage with a broad host range among the fast- and slow-growing mycobacteria such as , , and . L5 switches off host protein synthesis during the early stage of lytic growth, as was previously shown by protein expression profiling. Also, lethal genetic elements have been identified in L5 based on the fact that transformants could not be obtained with these genes. Using an inducible mycobacterial shuttle vector, we have identified three ORFs within an early operon of mycobacteriophage L5 which encode gene products (gp) toxic to the host when expressed. These ORFs, coding for gp77, gp78 and gp79, presumably function as shut-off genes during early stages of phage replication. There is evidence that cell division is affected by one of the proteins (gp79). The transcription of the cytotoxic polypeptides is directed by a promoter situated in ORF83 and transcription control is achieved through the phage repressor gp71, which is shown by co-expression of this protein. The findings presented here should provide useful tools for the molecular genetics of mycobacteria. Further analysis of these and other mycobacteriophage-derived toxic polypeptides, together with the identification of their cellular targets, might provide a tool for the rapid identification of promising drug targets in emerging and re-emerging mycobacterial pathogens.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/017004-0
2008-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/8/2304.html?itemId=/content/journal/micro/10.1099/mic.0.2008/017004-0&mimeType=html&fmt=ahah

References

  1. Belhumeur P., Drapeau G. R. 1984; Regulation of cell division in Escherichia coli: properties of new ftsZ mutants. Mol Gen Genet 197:254–260
    [Google Scholar]
  2. Brown K. L., Sarkis G. J., Wadsworth C., Hatfull G. F. 1997; Transcriptional silencing by the mycobacteriophage L5 repressor. EMBO J 16:5914–5921
    [Google Scholar]
  3. Chattopadhyay C., Sau S., Mandal N. C. 2003; Cloning and characterization of the promoters of temperate mycobacteriophage L1. J Biochem Mol Biol 36:586–592
    [Google Scholar]
  4. Dasgupta A., Datta P., Kundu M., Basu J. 2006; The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division. Microbiology 152:493–504
    [Google Scholar]
  5. Datta P., Dasgupta A., Singh A. K., Mukherjee P., Kundu M., Basu J. 2006; Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Mol Microbiol 62:1655–1673
    [Google Scholar]
  6. Daugelat S., Kowall J., Mattow J., Bumann D., Winter R., Hurwitz R., Kaufmann S. H. 2003; The RD1 proteins of Mycobacterium tuberculosis: expression in Mycobacterium smegmatis and biochemical characterization. Microbes Infect 5:1082–1095
    [Google Scholar]
  7. Donnelly-Wu M. K., Jacobs W. R. Jr, Hatfull G. F. 1993; Superinfection immunity of mycobacteriophage L5: applications for genetic transformation of mycobacteria. Mol Microbiol 7:407–417
    [Google Scholar]
  8. Dziadek J., Rutherford S. A., Madiraju M. V., Atkinson M. A., Rajagopalan M. 2003; Conditional expression of Mycobacterium smegmatis ftsZ, an essential cell division gene. Microbiology 149:1593–1603
    [Google Scholar]
  9. Fenwick M. L., Clark J. 1982; Early and delayed shut-off of host protein synthesis in cells infected with herpes simplex virus. J Gen Virol 61:121–125
    [Google Scholar]
  10. Hatfull G. F., Sarkis G. J. 1993; DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol Microbiol 7:395–405
    [Google Scholar]
  11. Hatfull G. F., Pedulla M. L., Jacobs-Sera D., Cichon P. M., Foley A., Ford M. E., Gonda R. M., Houtz J. M., Hryckowian A. J. other authors 2006; Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet 2:e92
    [Google Scholar]
  12. Liu J., Dehbi M., Moeck G., Arhin F., Bauda P., Bergeron D., Callejo M., Ferretti V., Ha N. other authors 2004; Antimicrobial drug discovery through bacteriophage genomics. Nat Biotechnol 22:185–191
    [Google Scholar]
  13. Nelson D. E., Young K. D. 2000; Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli . J Bacteriol 182:1714–1721
    [Google Scholar]
  14. Nesbit C. E., Levin M. E., Donnelly-Wu M. K., Hatfull G. F. 1995; Transcriptional regulation of repressor synthesis in mycobacteriophage L5. Mol Microbiol 17:1045–1056
    [Google Scholar]
  15. Pedulla M. L., Ford M. E., Houtz J. M., Karthikeyan T., Wadsworth C., Lewis J. A., Jacobs-Sera D., Falbo J., Gross J. other authors 2003; Origins of highly mosaic mycobacteriophage genomes. Cell 113:171–182
    [Google Scholar]
  16. Robinson N., Wolke M., Ernestus K., Plum G. 2007; A mycobacterial gene involved in synthesis of an outer cell envelope lipid is a key factor in prevention of phagosome maturation. Infect Immun 75:581–591
    [Google Scholar]
  17. Rybniker J., Kramme S., Small P. L. 2006; Host range of 14 mycobacteriophages in Mycobacterium ulcerans and seven other mycobacteria including Mycobacterium tuberculosis – application for identification and susceptibility testing. J Med Microbiol 55:37–42
    [Google Scholar]
  18. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Sarkis G. J., Jacobs W. R. Jr, Hatfull G. F. 1995; L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol Microbiol 15:1055–1067
    [Google Scholar]
  20. Shapira S. K., Chou J., Richaud F. V., Casadaban M. J. 1983; New versatile plasmid vectors for expression of hybrid proteins coded by a cloned gene fused to lacZ gene sequences encoding an enzymatically active carboxy-terminal portion of beta-galactosidase. Gene 25:71–82
    [Google Scholar]
  21. Sharma R., Raychaudhuri S., Dasgupta A. 2004; Nuclear entry of poliovirus protease-polymerase precursor 3CD: implications for host cell transcription shut-off. Virology 320:195–205
    [Google Scholar]
  22. Snapper S. B., Melton R. E., Mustafa S., Kieser T., Jacobs W. R. Jr 1990; Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis . Mol Microbiol 4:1911–1919
    [Google Scholar]
  23. Stinear T. P., Seemann T., Pidot S., Frigui W., Reysset G., Garnier T., Meurice G., Simon D., Bouchier C. other authors 2007; Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Res 17:192–200
    [Google Scholar]
  24. Svenson S. B., Karlstrom O. H. 1976; Bacteriophage T4-induced shut-off of host-specific translation. J Virol 17:326–334
    [Google Scholar]
  25. Terstappen G. C., Reggiani A. 2001; In silico research in drug discovery. Trends Pharmacol Sci 22:23–26
    [Google Scholar]
  26. Wei P., Stewart C. R. 1993; A cytotoxic early gene of Bacillus subtilis bacteriophage SPO1. J Bacteriol 175:7887–7900
    [Google Scholar]
  27. Zhang X., Bremer H. 1995; Control of the Escherichia coli rrnB P1 promoter strength by ppGpp. J Biol Chem 270:11181–11189
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/017004-0
Loading
/content/journal/micro/10.1099/mic.0.2008/017004-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error