1887

Abstract

In this study we investigate the ability of serovar Typhi (. Typhi) surface structures to influence invasion and adhesion in epithelial cell assay systems. In general, Typhi was found to be less adherent, invasive and cytotoxic than serovar Typhimurium ( Typhimurium). Culture conditions had little effect on adhesion of Typhi to cultured cells but had a marked influence on invasion. In contrast, bacterial growth conditions did not influence Typhi apical invasion of polarized cells. The levels of Typhi, but not Typhimurium, invasion were increased by application of bacteria to the basolateral surface of polarized cells. Expression of virulence (Vi) capsule by Typhi resulted in a modest reduction in adhesion, but profoundly reduced levels of invasion of non-polarized cells. However, Vi capsule expression had no affect on invasion of the apical or basolateral surfaces of polarized cells. Mutation of the , or genes did not affect invasion or adhesion in either the presence or the absence of Vi capsule.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/016998-0
2008-07-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/7/1914.html?itemId=/content/journal/micro/10.1099/mic.0.2008/016998-0&mimeType=html&fmt=ahah

References

  1. Arricau, N., Hermant, D., Waxin, H., Ecobichon, C., Duffey, P. S. & Popoff, M. Y. ( 1998; ). The RcsB–RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolarity. Mol Microbiol 29, 835–850.[CrossRef]
    [Google Scholar]
  2. Avogadri, F., Martinoli, C., Petrovska, L., Chiodoni, C., Transidico, P., Bronte, V., Longhi, R., Colombo, M. P., Dougan, G. & Rescigno, M. ( 2005; ). Cancer immunotherapy based on killing of Salmonella-infected tumor cells. Cancer Res 65, 3920–3927.[CrossRef]
    [Google Scholar]
  3. Caron, E. & Hall, A. ( 1998; ). Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science 282, 1717–1721.[CrossRef]
    [Google Scholar]
  4. Chatfield, S. N., Strahan, K., Pickard, D., Charles, I. G., Hormaeche, C. E. & Dougan, G. ( 1992; ). Evaluation of Salmonella typhimurium strains harbouring defined mutations in htrA and aroA in the murine salmonellosis model. Microb Pathog 12, 145–151.[CrossRef]
    [Google Scholar]
  5. Criss, A. K. & Casanova, J. E. ( 2003; ). Coordinate regulation of Salmonella enterica serovar Typhimurium invasion of epithelial cells by the Arp2/3 complex and Rho GTPases. Infect Immun 71, 2885–2891.[CrossRef]
    [Google Scholar]
  6. Criss, A. K., Ahlgren, D. M., Jou, T. S., McCormick, B. A. & Casanova, J. E. ( 2001; ). The GTPase Rac1 selectively regulates Salmonella invasion at the apical plasma membrane of polarized epithelial cells. J Cell Sci 114, 1331–1341.
    [Google Scholar]
  7. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  8. Deng, W., Liou, S. R., Plunkett, G., III, Mayhew, G. F., Rose, D. J., Burland, V., Kodoyianni, V., Schwartz, D. C. & Blattner, F. R. ( 2003; ). Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J Bacteriol 185, 2330–2337.[CrossRef]
    [Google Scholar]
  9. Edsall, G., Gaines, S., Landy, M., Tigertt, W. D., Sprinz, H., Trapani, R. J., Mandel, A. D. & Benenson, A. S. ( 1960; ). Studies on infection and immunity in experimental typhoid fever. I. Typhoid fever in chimpanzees orally infected with Salmonella typhosa. J Exp Med 112, 143–166.[CrossRef]
    [Google Scholar]
  10. Eichelberg, K. & Galan, J. E. ( 2000; ). The flagellar sigma factor FliA σ 28 regulates the expression of Salmonella genes associated with the centisome 63 type III secretion system. Infect Immun 68, 2735–2743.[CrossRef]
    [Google Scholar]
  11. Fey, A., Eichler, S., Flavier, S., Christen, R., Hofle, M. G. & Guzman, C. A. ( 2004; ). Establishment of a real-time PCR-based approach for accurate quantification of bacterial RNA targets in water, using Salmonella as a model organism. Appl Environ Microbiol 70, 3618–3623.[CrossRef]
    [Google Scholar]
  12. Galan, J. E. & Curtiss, R., III ( 1990; ). Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infect Immun 58, 1879–1885.
    [Google Scholar]
  13. Galan, J. E. & Curtiss, R., III ( 1991; ). Distribution of the invA, -B, -C, and -D genes of Salmonella typhimurium among other Salmonella serovars: invA mutants of Salmonella typhi are deficient for entry into mammalian cells. Infect Immun 59, 2901–2908.
    [Google Scholar]
  14. Heesemann, J. & Laufs, R. ( 1985; ). Double immunofluorescence microscopic technique for accurate differentiation of extracellularly and intracellularly located bacteria in cell culture. J Clin Microbiol 22, 168–175.
    [Google Scholar]
  15. Iyoda, S., Kamidoi, T., Hirose, K., Kutsukake, K. & Watanabe, H. ( 2001; ). A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium. Microb Pathog 30, 81–90.[CrossRef]
    [Google Scholar]
  16. Jones, B. D., Lee, C. A. & Falkow, S. ( 1992; ). Invasion by Salmonella typhimurium is affected by the direction of flagellar rotation. Infect Immun 60, 2475–2480.
    [Google Scholar]
  17. Lee, C. A. & Falkow, S. ( 1990; ). The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc Natl Acad Sci U S A 87, 4304–4308.[CrossRef]
    [Google Scholar]
  18. Lee, F. K., Morris, C. & Hackett, J. ( 2006; ). The Salmonella enterica serovar Typhi Vi capsule and self-association pili share controls on expression. FEMS Microbiol Lett 261, 41–46.[CrossRef]
    [Google Scholar]
  19. Liu, S. L. & Sanderson, K. E. ( 1995; ). Rearrangements in the genome of the bacterium Salmonella typhi. Proc Natl Acad Sci U S A 92, 1018–1022.[CrossRef]
    [Google Scholar]
  20. Liu, S. L., Ezaki, T., Miura, H., Matsui, K. & Yabuuchi, E. ( 1988; ). Intact motility as a Salmonella typhi invasion-related factor. Infect Immun 56, 1967–1973.
    [Google Scholar]
  21. Lowe, D. C., Savidge, T. C., Pickard, D., Eckmann, L., Kagnoff, M. F., Dougan, G. & Chatfield, S. N. ( 1999; ). Characterization of candidate live oral Salmonella typhi vaccine strains harboring defined mutations in aroA, aroC, and htrA. Infect Immun 67, 700–707.
    [Google Scholar]
  22. Lucas, R. L., Lostroh, C. P., DiRusso, C. C., Spector, M. P., Wanner, B. L. & Lee, C. A. ( 2000; ). Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar Typhimurium. J Bacteriol 182, 1872–1882.[CrossRef]
    [Google Scholar]
  23. Lyczak, J. B. & Pier, G. B. ( 2002; ). Salmonella enterica serovar Typhi modulates cell surface expression of its receptor, the cystic fibrosis transmembrane conductance regulator, on the intestinal epithelium. Infect Immun 70, 6416–6423.[CrossRef]
    [Google Scholar]
  24. Lyczak, J. B., Zaidi, T. S., Grout, M., Bittner, M., Contreras, I. & Pier, G. B. ( 2001; ). Epithelial cell contact-induced alterations in Salmonella enterica serovar Typhi lipopolysaccharide are critical for bacterial internalization. Cell Microbiol 3, 763–772.[CrossRef]
    [Google Scholar]
  25. McClelland, M., Sanderson, K. E., Spieth, J., Clifton, S. W., Latreille, P., Courtney, L., Porwollik, S., Ali, J., Dante, M. & other authors ( 2001; ). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856.[CrossRef]
    [Google Scholar]
  26. McCormick, B. A., Miller, S. I., Carnes, D. & Madara, J. L. ( 1995; ). Transepithelial signaling to neutrophils by salmonellae: a novel virulence mechanism for gastroenteritis. Infect Immun 63, 2302–2309.
    [Google Scholar]
  27. Mills, S. D. & Finlay, B. B. ( 1994; ). Comparison of Salmonella typhi and Salmonella typhimurium invasion, intracellular growth and localization in cultured human epithelial cells. Microb Pathog 17, 409–423.[CrossRef]
    [Google Scholar]
  28. Miyake, M., Zhao, L., Ezaki, T., Hirose, K., Khan, A. Q., Kawamura, Y., Shima, R., Kamijo, M., Masuzawa, T. & Yanagihara, Y. ( 1998; ). Vi-deficient and nonfimbriated mutants of Salmonella typhi agglutinate human blood type antigens and are hyperinvasive. FEMS Microbiol Lett 161, 75–82.[CrossRef]
    [Google Scholar]
  29. Parkhill, J., Dougan, G., James, K. D., Thomson, N. R., Pickard, D., Wain, J., Churcher, C., Mungall, K. L., Bentley, S. D. & other authors ( 2001; ). Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413, 848–852.[CrossRef]
    [Google Scholar]
  30. Parry, C. M., Hien, T. T., Dougan, G., White, N. J. & Farrar, J. J. ( 2002; ). Typhoid fever. N Engl J Med 347, 1770–1782.[CrossRef]
    [Google Scholar]
  31. Pickard, D., Li, J., Roberts, M., Maskell, D., Hone, D., Levine, M., Dougan, G. & Chatfield, S. ( 1994; ). Characterization of defined ompR mutants of Salmonella typhi: ompR is involved in the regulation of Vi polysaccharide expression. Infect Immun 62, 3984–3993.
    [Google Scholar]
  32. Pickard, D., Wain, J., Baker, S., Line, A., Chohan, S., Fookes, M., Barron, A., Gaora, P. O., Chabalgoity, J. A. & other authors ( 2003; ). Composition, acquisition, and distribution of the Vi exopolysaccharide-encoding Salmonella enterica pathogenicity island SPI-7. J Bacteriol 185, 5055–5065.[CrossRef]
    [Google Scholar]
  33. Raffatellu, M., Chessa, D., Wilson, R. P., Dusold, R., Rubino, S. & Baumler, A. J. ( 2005a; ). The Vi capsular antigen of Salmonella enterica serotype Typhi reduces Toll-like receptor-dependent interleukin-8 expression in the intestinal mucosa. Infect Immun 73, 3367–3374.[CrossRef]
    [Google Scholar]
  34. Raffatellu, M., Wilson, R. P., Chessa, D., Andrews-Polymenis, H., Tran, Q. T., Lawhon, S., Khare, S., Adams, L. G. & Baumler, A. J. ( 2005b; ). SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype Typhimurium invasion of epithelial cells. Infect Immun 73, 146–154.[CrossRef]
    [Google Scholar]
  35. Sharma, A. & Qadri, A. ( 2004; ). Vi polysaccharide of Salmonella typhi targets the prohibitin family of molecules in intestinal epithelial cells and suppresses early inflammatory responses. Proc Natl Acad Sci U S A 101, 17492–17497.[CrossRef]
    [Google Scholar]
  36. Tartera, C. & Metcalf, E. S. ( 1993; ). Osmolarity and growth phase overlap in regulation of Salmonella typhi adherence to and invasion of human intestinal cells. Infect Immun 61, 3084–3089.
    [Google Scholar]
  37. Townsend, S. M., Kramer, N. E., Edwards, R., Baker, S., Hamlin, N., Simmonds, M., Stevens, K., Maloy, S., Parkhill, J. & other authors ( 2001; ). Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect Immun 69, 2894–2901.[CrossRef]
    [Google Scholar]
  38. Tsui, I. S., Yip, C. M., Hackett, J. & Morris, C. ( 2003; ). The type IVB pili of Salmonella enterica serovar Typhi bind to the cystic fibrosis transmembrane conductance regulator. Infect Immun 71, 6049–6050.[CrossRef]
    [Google Scholar]
  39. Virlogeux, I., Waxin, H., Ecobichon, C., Lee, J. O. & Popoff, M. Y. ( 1996; ). Characterization of the rcsA and rcsB genes from Salmonella typhi: rcsB through tviA is involved in regulation of Vi antigen synthesis. J Bacteriol 178, 1691–1698.
    [Google Scholar]
  40. Weinstein, D. L., O'Neill, B. L., Hone, D. M. & Metcalf, E. S. ( 1998; ). Differential early interactions between Salmonella enterica serovar Typhi and two other pathogenic Salmonella serovars with intestinal epithelial cells. Infect Immun 66, 2310–2318.
    [Google Scholar]
  41. Zhang, X. L., Tsui, I. S., Yip, C. M., Fung, A. W., Wong, D. K., Dai, X., Yang, Y., Hackett, J. & Morris, C. ( 2000; ). Salmonella enterica serovar Typhi uses type IVB pili to enter human intestinal epithelial cells. Infect Immun 68, 3067–3073.[CrossRef]
    [Google Scholar]
  42. Zhao, L., Ezak, T., Li, Z. Y., Kawamura, Y., Hirose, K. & Watanabe, H. ( 2001; ). Vi-suppressed wild strain Salmonella typhi cultured in high osmolarity is hyperinvasive toward epithelial cells and destructive of Peyer's patches. Microbiol Immunol 45, 149–158.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/016998-0
Loading
/content/journal/micro/10.1099/mic.0.2008/016998-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error