Expression of and in during copper stress Free

Abstract

Copper homeostasis is tightly regulated in all living cells as a result of the necessity and toxicity of this metal in free cationic form. In Gram-negative bacteria CPx-type ATPases (e.g. CopA in ) and heavy-metal efflux RND proteins (e.g. CusA in ) play an important role in transport of copper across the cytoplasmic and outer membrane. We investigated the expression of CusA and CopA-like proteins in MR1 and strain MB4, a Mn(IV)-reducing isolate from a metal-polluted harbour sediment. Q-PCR analysis of total mRNA extracted from cultures grown under aerobic conditions with 25 μM copper showed significantly increased expression of (Student's -test: MR1, <0.0001; MB4, =0.0006). This gene was also induced in the presence of 100 μM copper and 10 or 25 μM cadmium in both tested strains. In the absence of oxygen, with fumarate as final electron acceptor and 100 μM copper, a prolonged lag phase (5 h) was observed and general fitness decreased as evidenced by twofold lower copy numbers of 16S rRNA compared to aerobic conditions. expression in cells grown under these conditions remained at comparable levels (MR1) or was slightly decreased (MB4), compared to aerobic copper challenges. A gene homologous to the gene of was not detected in strain MB4. Although low copy numbers were observed in strain MR1 under conditions with 25 and 100 μM copper, was not detected in mRNA from cultures grown in the presence of 10 μM cadmium, or in the absence of added heavy metals. However, was highly induced under anaerobic conditions with 100 μM copper (=0.0011). These results suggest essentially different roles for the two proteins CopA and CusA in the copper response in MR1, similar to findings in more metal-resistant bacteria such as and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/016857-0
2008-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/9/2709.html?itemId=/content/journal/micro/10.1099/mic.0.2008/016857-0&mimeType=html&fmt=ahah

References

  1. Baker-Austin C., Dopson M., Wexler M., Sawers R. G., Bond P. L. 2005; Molecular insight into extreme copper resistance in the extremophilic archaeon Ferroplasma acidarmanus Fer1. Microbiology 151:2637–2646
    [Google Scholar]
  2. Banci L., Bertini I., Ciofi-Baffoni S., Del Conte R., Gonnelli L. 2003; Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis . Biochemistry 42:1939–1949
    [Google Scholar]
  3. Bencheikh-Latmani R., Williams S. M., Haucke L., Criddle C. S., Wu L., Zhou J., Tebo B. M. 2005; Global transcriptional profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) reduction. Appl Environ Microbiol 71:7453–7460
    [Google Scholar]
  4. Bikandi J., San Millán R., Rementeria A., Garaizar J. 2004; In silico analysis of complete bacterial genomes: PCR, AFLP-PCR and endonuclease restriction. Bioinformatics 20:798–799
    [Google Scholar]
  5. Coombs J. M., Barkay T. 2004; Molecular evidence for the evolution of metal homeostasis genes by lateral gene transfer in bacteria from the deep terrestrial subsurface. Appl Environ Microbiol 70:1698–1707
    [Google Scholar]
  6. Coombs J. M., Barkay T. 2005; New findings on evolution of metal homeostasis genes: evidence from comparative genome analysis of bacteria and archaea. Appl Environ Microbiol 71:7083–7091
    [Google Scholar]
  7. Ettema T. J. G., Brinkman A. B., Lamers P. P., Kornet N. G., de Vos W. M., van der Oost J. 2006; Molecular characterization of a conserved archaeal copper resistance ( cop ) gene cluster and its copper-responsive regulator in Sulfolobus solfataricus P2. Microbiology 152:1969–1979
    [Google Scholar]
  8. Fan B., Rosen B. P. 2002; Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase. J Biol Chem 277:46987–46992
    [Google Scholar]
  9. Ferris M. J., Muyzer G., Ward D. M. 1996; Denaturing gradient gel electrophoresis profiles of 16S rDNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346
    [Google Scholar]
  10. Fleige S., Pfaffl M. W. 2006; RNA quality and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27:126–139
    [Google Scholar]
  11. Franke S., Grass G., Rensing C., Nies D. H. 2003; Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli . J Bacteriol 185:3804–3812
    [Google Scholar]
  12. Gaballa A., Helmann J. D. 2003; Bacillus subtilis CPx-type ATPases: characterization of Cd, Zn, Co and Cu efflux systems. Biometals 16:497–505
    [Google Scholar]
  13. Gao H., Wang Y., Liu X., Yan T., Wu L., Alm E., Arkin A., Thompson D. K., Zhou J. 2004; Global transcriptome analysis of the heat shock response of Shewanella oneidensis . J Bacteriol 186:7796–7803
    [Google Scholar]
  14. Goldberg M., Pribyl T., Juhnke S., Nies D. H. 1999; Energetics and topology of CzcA, a cation/proton antiporter of the resistance-nodulation-cell division protein family. J Biol Chem 274:26065–26070
    [Google Scholar]
  15. Groh J. L., Luo Q., Ballard J. D., Krumholz L. R. 2007; Genes that enhance the ecological fitness of Shewanella oneidensis MR-1 in sediments reveal the value of antibiotic resistance. Appl Environ Microbiol 73:492–498
    [Google Scholar]
  16. Guha H., Jayachandran K., Maurrasse F. 2003; Microbiological reduction of chromium(VI) in presence of pyrolusite-coated sand by Shewanella alga Simidu ATCC 55627 in laboratory column experiments. Chemosphere 52:175–183
    [Google Scholar]
  17. Heidelberg J. F., Paulsen I. T., Nelson K. E., Gaidos E. J., Nelson W. C., Read T. D., Eisen J. A., Seshadri R., Ward N. other authors 2002; Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis . Nat Biotechnol 20:1118–1122
    [Google Scholar]
  18. Huggett J., Dheda K., Bustin S., Zumla A. 2005; Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279–284
    [Google Scholar]
  19. Ivanova E. P., Sawabe T., Zhukova N. V., Gorshkova N. M., Nedashkovskaya O. I., Hayashi K., Frolova G. M., Sergeev A. F., Pavel K. G. other authors 2003; Occurrence and diversity of mesophilic Shewanella strains isolated from the north-west Pacific Ocean. Syst Appl Microbiol 26:293–301
    [Google Scholar]
  20. Kershaw C. J., Brown N. L., Constantinidou C., Patel M. D., Hobman J. L. 2005; The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology 151:1187–1198
    [Google Scholar]
  21. Kolker E., Picone A. F., Galperin M. Y., Romine M. F., Higdon R., Makarova K. S., Kolker N., Anderson G. A., Qiu X. other authors 2005; Global profiling of Shewanella oneidensis MR-1: expression of hypothetical genes and improved functional annotations. Proc Natl Acad Sci U S A 102:2099–2104
    [Google Scholar]
  22. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163
    [Google Scholar]
  23. Lassmann T., Sonnhammer E. L. 2005; Automatic assessment of alignment quality. Nucleic Acids Res 33:7120–7128
    [Google Scholar]
  24. Legatzki A., Grass G., Anton A., Rensing C., Nies D. H. 2003; Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans . J Bacteriol 185:4354–4361
    [Google Scholar]
  25. Liang S.-T., Xu Y.-C., Dennis P., Bremer H. 2000; mRNA composition and control of bacterial gene expression. J Bacteriol 182:3037–3044
    [Google Scholar]
  26. Nealson K. H., Myers C. R. 1992; Microbial reduction of manganese and iron: new approaches to carbon cycling. Appl Environ Microbiol 58:439–443
    [Google Scholar]
  27. Nielsen K. K., Boye M. 2005; Real-time quantitative reverse transcription-PCR analysis of expression stability of Actinobacillus pleuropneumoniae housekeeping genes during in vitro growth under iron-depleted conditions. Appl Environ Microbiol 71:2949–2954
    [Google Scholar]
  28. Nies D. H. 1999; Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750
    [Google Scholar]
  29. Nies D. H. 2003; Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol Rev 27:313–339
    [Google Scholar]
  30. Outten F. W., Huffman D. L., Hale J. A., O'Halloran T. V. 2001; The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli . J Biol Chem 276:30670–30677
    [Google Scholar]
  31. Paulsen I. T., Brown M. H., Skurray R. A. 1996; Proton-dependent multidrug efflux systems. Microbiol Rev 60:575–608
    [Google Scholar]
  32. Qiu X., Sundin G. W., Wu L., Zhou J., Tiedje J. M. 2005; Comparative analysis of differentially expressed genes in Shewanella oneidensis MR-1 following exposure to UVC, UVB, and UVA radiation. J Bacteriol 187:3556–3564
    [Google Scholar]
  33. Rae T. D., Schmidt P. J., Pufahl R. A., Culotta V. C., O'Halloran T. V. 1999; Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808
    [Google Scholar]
  34. Rensing C., Grass G. 2003; Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 27:197–213
    [Google Scholar]
  35. Rensing C., Fan B., Sharma R., Mitra B., Rosen B. P. 2000; copA : an Escherichia coli Cu(I)-translocating p-type ATPase. Proc Natl Acad Sci U S A 97:652–656
    [Google Scholar]
  36. Rose T. M., Henikoff J. G., Henikoff S. 2003; codehop (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucleic Acids Res 31:3763–3766
    [Google Scholar]
  37. Rozen S., Skaletsky H. 2000; Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386
    [Google Scholar]
  38. Saier M. H. 2003; Tracing pathways of transport protein evolution. Mol Microbiol 48:1145–1156
    [Google Scholar]
  39. Saltikov C. W., Cifuentes A., Venkateswaran K., Newman D. K. 2003; The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl Environ Microbiol 69:2800–2809
    [Google Scholar]
  40. Schmittgen T. D., Zakrajsek B. A. 2000; Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. J Biochem Biophys Methods 46:69–81
    [Google Scholar]
  41. Sharkey F. H., Banat I. M., Marchant R. 2004; Detection and quantification of gene expression in environmental bacteriology. Appl Environ Microbiol 70:3795–3806
    [Google Scholar]
  42. Solioz M., Stoyanov J. V. 2003; Copper homeostasis in Enterococcus hirae . FEMS Microbiol Rev 27:183–195
    [Google Scholar]
  43. Sonnhammer E. L., von Heijne G., Krogh A. 1998; A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182
    [Google Scholar]
  44. Teitzel G. M., Geddie A., De Long S. K., Krisits M. J., Whiteley M., Parsek M. R. 2006; Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa . J Bacteriol 188:7242–7256
    [Google Scholar]
  45. Toes A.-C. M., Geelhoed J. S., Kuenen J. G., Muyzer G. 2008; Characterization of heavy metal resistance of Fe(III)- and Mn(IV)-reducing Shewanella isolates from marine sediments. Geomicrobiol J in press
    [Google Scholar]
  46. Tsai K.-J., Lin Y.-F., Wong M. D., Yang H. H., Fu H. L., Rosen B. P. 2002; Membrane topology of the pl258 cadA Cd(II)/Pb(II)/Zn(II)-translocating p-type ATPase. J Bioenerg Biomembr 34:147–156
    [Google Scholar]
  47. Vandecasteele S. J., Peetermans W. E., Merckx R., van Eldere J. 2001; Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions. J Bacteriol 183:7094–7101
    [Google Scholar]
  48. Venkateswaran K., Moser D., Dollhopf M. E., Lies D. P., Saffarini D. A., MacGregor B. J., Ringelberg D. B., White D. C., Nishijima M. other authors 1999; Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49:705–724
    [Google Scholar]
  49. Ziemke F., Hofle M., Lalucat J., Rossello-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/016857-0
Loading
/content/journal/micro/10.1099/mic.0.2008/016857-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed