1887

Abstract

Several fungal pathogens are able to enter and persist within eukaryotic cells as part of their infectious life cycle. is a saprophytic entomopathogenic fungus virulent towards numerous tick species, including those within the genera and . Infection of the target organism by this fungus proceeds via several steps, including adhesion and penetration of the host cuticle, proliferation within tissues and the haemolymph, and eventual eruption through the host cadaver. To determine whether could enter and persist within tick cells, we examined the uptake of wild-type and green fluorescent protein (GFP)-expressing fungal strains into two different tick cells lines, IDE12 and AAE2, derived from and , respectively. Uptake by tick cells was monitored by confocal fluorescent microscopy, as well as by scanning and transmission electron microscopy. -specific antibodies were used to discriminate between extracellular and internalized fungal cells and to quantify the rate of uptake. Both cell lines internalized fungal conidia, and quantitative studies using the AAE2 cell line indicated that almost 70 % of the AAE2 cells contained internalized conidia after 6 h incubation. Internalization of conidia by AAE2 cells was time and temperature dependent and could be inhibited by 80 % with 1 mM cytochalasin D. Internalized conidia remained viable within the AAE2 cells, where they were able to germinate and grow, eventually erupting from the host cells. These data provide evidence that conidia can be internalized, survive and grow within phagocytic cells and indicate that phagocytosis may serve as an alternative invasion route facilitating fungal nutrient acquisition, immune system evasion and dissemination throughout the host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/016667-0
2008-06-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/6/1700.html?itemId=/content/journal/micro/10.1099/mic.0.2008/016667-0&mimeType=html&fmt=ahah

References

  1. Benjamin, M. A., Zhioua, E. & Ostfeld, R. S. ( 2002; ). Laboratory and field evaluation of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) for controlling questing adult Ixodes scapularis (Acari: Ixodidae). J Med Entomol 39, 723–728.[CrossRef]
    [Google Scholar]
  2. Berbee, M. L. & Taylor, J. W. ( 2001; ). Fungal molecular evolution: gene trees and geologic time. In The Mycota VII, Part B. Edited by D. J. McLaughlin, E. G. McLaughlin & P. A. Lemke. Berlin, Heidelberg: Springer-Verlag.
  3. Bittencourt, V. R. ( 2000; ). Trials to control South American ticks with entomopathogenic fungi. Ann N Y Acad Sci 916, 555–558.
    [Google Scholar]
  4. Chandler, D., Davidson, G., Pell, J. K., Ball, B. V., Shaw, K. E. & Sunderland, K. D. ( 2000; ). Fungal biocontrol of acari. Biocontrol Sci Technol 10, 357–384.[CrossRef]
    [Google Scholar]
  5. Chang, Z. L., Netski, D., Thorkildson, P. & Kozel, T. R. ( 2006; ). Binding and internalization of glucuronoxylomannan, the major capsular polysaccharide of Cryptococcus neoformans, by murine peritoneal macrophages. Infect Immun 74, 144–151.[CrossRef]
    [Google Scholar]
  6. Diaz, M. P., Macias, A. F., Navarro, S. R. & De la Torres, M. ( 2006; ). Mechanism of action of entomopathogenic fungi. Interciencia 31, 856–860.
    [Google Scholar]
  7. Fernandes, E. K., da Costa, G. L., de Souza, E. J., de Moraes, A. M. & Bittencourt, V. R. ( 2003; ). Beauveria bassiana isolated from engorged females and tested against eggs and larvae of Boophilus microplus (Acari: Ixodidae). J Basic Microbiol 43, 393–398.[CrossRef]
    [Google Scholar]
  8. Filler, S. G. & Sheppard, D. C. ( 2006; ). Fungal invasion of normally non-phagocytic host cells. PLoS Pathog 2, e129 [CrossRef]
    [Google Scholar]
  9. Gill, E. E. & Fast, N. M. ( 2006; ). Assessing the microsporidia–fungi relationship: combined phylogenetic analysis of eight genes. Gene 375, 103–109.[CrossRef]
    [Google Scholar]
  10. Harley, J. L. ( 1992; ). Mycorrhizae (Enclyclopedia of Science and Technology 11), 7th edn. New York: McGraw-Hill.
  11. Hu, G. & Leger, R. J. S. ( 2004; ). A phylogenomic approach to reconstructing the diversification of serine proteases in fungi. J Evol Biol 17, 1204–1214.[CrossRef]
    [Google Scholar]
  12. Ibrahim-Granet, O., Philippe, B., Boleti, H., Boisvieux-Ulrich, E., Grenet, D., Stern, M. & Latgé, J. P. ( 2003; ). Phagocytosis and intracellular fate of Aspergillus fumigatus conidia in alveolar macrophages. Infect Immun 71, 891–903.[CrossRef]
    [Google Scholar]
  13. Jumpponen, A. ( 2001; ). Dark septate endophytes: are they mycorrhizal? Mycorrhiza 11, 207–211.[CrossRef]
    [Google Scholar]
  14. Kaaya, G. P. ( 2000; ). Laboratory and field evaluation of entomogenous fungi for tick control. Ann N Y Acad Sci 916, 559–564.
    [Google Scholar]
  15. Kaaya, G. P. & Hassan, S. ( 2000; ). Entomogenous fungi as promising biopesticides for tick control. Exp Appl Acarol 24, 913–926.[CrossRef]
    [Google Scholar]
  16. Keeling, P. J., Fast, N. M., Law, J. S., Williams, B. A. & Slamovits, C. H. ( 2005; ). Comparative genomics of microsporidia. Folia Parasitol (Praha) 52, 8–14.[CrossRef]
    [Google Scholar]
  17. Kirkland, B. H., Cho, E. M. & Keyhani, N. O. ( 2004a; ). Differential susceptibility of Amblyomma maculatum and Amblyomma americanum (Acari: Ixodidea) to the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. Biol Control 31, 414–421.[CrossRef]
    [Google Scholar]
  18. Kirkland, B. H., Westwood, G. S. & Keyhani, N. O. ( 2004b; ). Pathogenicity of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to Ixodidae tick species Dermacentor variabilis, Rhipicephalus sanguineus, and Ixodes scapularis. J Med Entomol 41, 705–711.[CrossRef]
    [Google Scholar]
  19. Kirkland, B. H., Eisa, A. & Keyhani, N. O. ( 2005; ). Oxalic acid as a fungal acaracidal virulence factor. J Med Entomol 42, 346–351.[CrossRef]
    [Google Scholar]
  20. Kurtti, T. J., Simser, J. A., Baldridge, G. D., Palmer, A. T. & Munderloh, U. G. ( 2005; ). Factors influencing in vitro infectivity and growth of Rickettsia peacockii (Rickettsiales: Rickettsiaceae), an endosymbiont of the Rocky Mountain wood tick, Dermacentor andersoni (Acari, Ixodidae). J Invertebr Pathol 90, 177–186.[CrossRef]
    [Google Scholar]
  21. Latgé, J. P. & Calderone, R. ( 2002; ). Host–microbe interactions: fungi invasive human fungal opportunistic infections. Curr Opin Microbiol 5, 355–358.[CrossRef]
    [Google Scholar]
  22. Lopes Bezerra, L. M. L. & Filler, S. G. ( 2004; ). Interactions of Aspergillus fumigatus with endothelial cells: internalization, injury, and stimulation of tissue factor activity. Blood 103, 2143–2149.[CrossRef]
    [Google Scholar]
  23. Maranga, R. O., Hassanali, A., Kaaya, G. P. & Mueke, J. M. ( 2006; ). Performance of a prototype baited-trap in attracting and infecting the tick Amblyomma variegatum (Acari: Ixodidae) in field experiments. Exp Appl Acarol 38, 211–218.[CrossRef]
    [Google Scholar]
  24. Mattila, J. T., Munderloh, U. G. & Kurtti, T. J. ( 2007; ). Phagocytosis of the Lyme disease spirochete, Borrelia burgdorferi, by cells from the ticks, Ixodes scapularis and Dermacentor andersoni, infected with an endosymbiont, Rickettsia peacockii. J Insect Sci 7</bold>
    [Google Scholar]
  25. Munderloh, U. G., Liu, Y., Wang, M. M., Chen, C. S. & Kurtti, T. J. ( 1994; ). Establishment, maintenance and description of cell-lines from the tick Ixodes scapularis. J Parasitol 80, 533–543.[CrossRef]
    [Google Scholar]
  26. Newman, S. L., Gootee, L., Hilty, J. & Morris, R. E. ( 2006; ). Human macrophages do not require phagosome acidification to mediate fungistatic/fungicidal activity against Histoplasma capsulatum. J Immunol 176, 1806–1813.[CrossRef]
    [Google Scholar]
  27. Pal, S., St Leger, R. J. & Wu, L. P. ( 2007; ). Fungal peptide Destruxin A plays a specific role in suppressing the innate immune response in Drosophila melanogaster. J Biol Chem 282, 8969–8977.[CrossRef]
    [Google Scholar]
  28. Parola, P. & Raoult, D. ( 2001; ). Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 32, 897–928.[CrossRef]
    [Google Scholar]
  29. Pirali-Kheirabadi, K., Haddadzadeh, H., Razzaghi-Abyaneh, M., Bokaie, S., Zare, R., Ghazavi, M. & Shams-Ghahfarokhi, M. ( 2007; ). Biological control of Rhipicephalus (Boophilus) annulatus by different strains of Metarhizium anisopliae, Beauveria bassiana and Lecanicillium psalliotae fungi. Parasitol Res 100, 1297–1302.[CrossRef]
    [Google Scholar]
  30. Polar, P., Kairo, M. T. K., Peterkin, D., Moore, D., Pegram, R. & John, S. A. ( 2005; ). Assessment of fungal isolates for development of a myco-acaricide for cattle tick control. Vector Borne Zoonotic Dis 5, 276–284.[CrossRef]
    [Google Scholar]
  31. Quesada-Moraga, E., Navas-Cortes, J. A., Maranhao, E. A. A., Ortiz-Urquiza, A. & Santiago-Alvarez, C. ( 2007; ). Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol Res 111, 947–966.[CrossRef]
    [Google Scholar]
  32. Roberts, D. W. & Leger, R. J. S. ( 2004; ). Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol 54, 1–70.
    [Google Scholar]
  33. Samish, M., Ginsberg, H. & Glazer, I. ( 2004; ). Biological control of ticks. Parasitology 129, S389–S403.[CrossRef]
    [Google Scholar]
  34. Sewify, G. H. & Habib, S. M. ( 2001; ). Biological control of the tick fowl Argas persicargas persicus by the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae. J Pest Sci 74, 121–123.
    [Google Scholar]
  35. Smith, S. E. & Read, D. J. ( 1997; ). Mycorrhizal Symbiosis. London: Academic Press.
  36. Sonenshine, D. E. ( 1993; ). Biology of Ticks. New York: Oxford University Press.
  37. St Leger, R. J., Joshi, L. & Roberts, D. W. ( 1997; ). Adaptation of proteases and carbohydrates of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 143, 1983–1992.[CrossRef]
    [Google Scholar]
  38. Wang, C. S. & St Leger, R. J. ( 2005; ). Developmental and transcriptional responses to host and nonhost cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum. Eukaryot Cell 4, 937–947.[CrossRef]
    [Google Scholar]
  39. Wang, C. & St Leger, R. J. ( 2006; ). A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci U S A 103, 6647–6652.[CrossRef]
    [Google Scholar]
  40. Wasylnka, J. A. & Moore, M. M. ( 2003; ). Aspergillus fumigatus conidia survive and germinate in acidic organelles of A549 epithelial cells. J Cell Sci 116, 1579–1587.[CrossRef]
    [Google Scholar]
  41. Wasylnka, J. A., Hissen, A. H., Wan, A. N. & Moore, M. M. ( 2005; ). Intracellular and extracellular growth of Aspergillus fumigatus. Med Mycol 43 (Suppl. 1), S27–S30.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/016667-0
Loading
/content/journal/micro/10.1099/mic.0.2008/016667-0
Loading

Data & Media loading...

Supplements

Videos of the dual-label time-lapse photography used to gather dynamic information concerning the process of internalization and growth of conidia within AAE2 tick cells. Selected images are shown in Fig. 9 of the main paper. , first 30 min of internalization [ AVI file] (15.7 MB) , 30 min-9 h AAE2 [ link text] (139.4 MB) , 9-18 h [ AVI file] (142.7 MB)

Videos of the dual-label time-lapse photography used to gather dynamic information concerning the process of internalization and growth of conidia within AAE2 tick cells. Selected images are shown in Fig. 9 of the main paper. , first 30 min of internalization [ AVI file] (15.7 MB) , 30 min-9 h AAE2 [ link text] (139.4 MB) , 9-18 h [ AVI file] (142.7 MB)

Videos of the dual-label time-lapse photography used to gather dynamic information concerning the process of internalization and growth of conidia within AAE2 tick cells. Selected images are shown in Fig. 9 of the main paper. , first 30 min of internalization [ AVI file] (15.7 MB) , 30 min-9 h AAE2 [ link text] (139.4 MB) , 9-18 h [ AVI file] (142.7 MB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error