1887

Abstract

Strains Sp7 and Cd of a plant growth-promoting rhizobacterium, differ in synthesis of carotenoids. While colonies of strain Sp7 have a white–cream colour on plates, colonies of strain Cd are orange–pink coloured because of the synthesis of carotenoids. Screening of a mini-Tn mutant library of Sp7 revealed two orange–pink-coloured mutants that produced carotenoids. Cloning and sequencing of the Tn flanking region in both the carotenoid-producing mutants of Sp7 revealed insertion of Tn in an ORF encoding anti- factor, a ChrR-like protein. The upstream region of the Tn-mutated ORF contained another ORF that encoded an extra-cytoplasmic function (ECF)-class factor ( , RpoE). When the nucleotide sequences of the corresponding ORFs from the carotenoid-producing strain Cd were analysed, the sequence of the Cd was identical to that of the carotenoid non-producing strain Sp7, but the Cd anti- ORF had a deletion that caused frame shifting and creation of a stop codon. This resulted in the premature termination of the protein, which was about 7 kDa smaller than the Sp7 anti- . Cloning of Sp7 anti- in a broad-host-range expression vector and expression in Cd and in the anti- knockout mutant of Sp7 resulted in the inhibition of carotenoid synthesis. Similarly, cloning and overexpression of Sp7 in Sp7 resulted in the production of carotenoids. These observations clearly indicate that carotenoid synthesis in is controlled by with its cognate anti- .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/016428-0
2008-07-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/7/2096.html?itemId=/content/journal/micro/10.1099/mic.0.2008/016428-0&mimeType=html&fmt=ahah

References

  1. Abdel-Salam, M. S. & Klingmueller, W. ( 1987; ). Transposon Tn5 mutagenesis in Azospirillum lipoferum: isolation of indole acetic acid mutants. Mol Gen Genet 210, 165–170.[CrossRef]
    [Google Scholar]
  2. Altschul, F. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Anthony, J. R., Warczak, K. L. & Donohue, T. ( 2005; ). A transcriptional response to singlet oxygen, a toxic byproduct of photosynthesis. Proc Natl Acad Sci U S A 102, 6502–6507.[CrossRef]
    [Google Scholar]
  4. Browning, D. F., Whitworth, D. E. & Hodgson, D. A. ( 2003; ). Light-induced carotenogenesis in Myxococcus xanthus: functional characterization of the ECF sigma factor CarQ and anti-sigma factor CarR. Mol Microbiol 48, 237–251.[CrossRef]
    [Google Scholar]
  5. Campbell, E. A., Greenwell, R., Anthony, J. R., Wang, S., Lionel, L., Das, K., Sofia, H. J., Donohue, T. J. & Darst, S. A. ( 2007; ). A conserved structural module regulates transcriptional responses to diverse stress signals in bacteria. Mol Cell 27, 793–805.[CrossRef]
    [Google Scholar]
  6. Costanzo, A. & Ades, S. E. ( 2006; ). Growth phase-dependent regulation of the extracytoplasmic stress factor, σ E, by guanosine 3′,5′-bispyrophosphate (ppGpp). J Bacteriol 188, 4627–4634.[CrossRef]
    [Google Scholar]
  7. Costanzo, A., Nicoloff, H., Barchinger, S. E., Banta, A. B., Gourse, R. L. & Ades, S. E. ( 2008; ). ppGpp and DksA likely regulate the activity of the extracytoplasmic stress factor σ E in E. coli by both direct and indirect mechanisms. Mol Microbiol 67, 619–632.[CrossRef]
    [Google Scholar]
  8. D'Souza, S. E., Altekar, W. & D'Souza, S. F. ( 1997; ). Adaptive response of Haloferax mediterranei to low concentrations of NaCl (< 20 %) in the growth medium. Arch Microbiol 168, 68–71.[CrossRef]
    [Google Scholar]
  9. Fong, N. J. C., Burgess, M. L., Barrow, K. D. & Glenn, D. R. ( 2001; ). Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol 56, 750–756.[CrossRef]
    [Google Scholar]
  10. Hartmann, A. & Hurek, T. ( 1988; ). Effect of carotenoid overproduction on oxygen tolerance of nitrogen fixation in Azospirillum brasilense Sp7. J Gen Microbiol 134, 2449–2455.
    [Google Scholar]
  11. Jagannadham, M. V., Rao, V. J. & Shivaji, S. ( 1991; ). The major carotenoid pigment of a psychrotrophic Micrococcus roseus strain: purification, structure, and interaction with synthetic membranes. J Bacteriol 173, 7911–7917.
    [Google Scholar]
  12. Kato, F., Hino, T., Nakaji, A., Tanaka, M. & Koyama, Y. ( 1995; ). Carotenoid synthesis in Streptomyces setonii ISP5395 is induced by the gene crtS, whose product is similar to a sigma factor. Mol Gen Genet 247, 387–390.[CrossRef]
    [Google Scholar]
  13. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  14. Mehnaz, S., Weselowski, B. & Laza, G. ( 2007; ). Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int J Syst Evol Microbiol 57, 620–624.[CrossRef]
    [Google Scholar]
  15. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  16. Missiakas, D. & Raina, S. ( 1998; ). The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28, 1059–1066.[CrossRef]
    [Google Scholar]
  17. Morales, V. M., Backman, A. & Bagdasarian, M. ( 1991; ). A series of wide-host-range low copy-number vectors that allow direct screening for recombinants. Gene 97, 39–47.[CrossRef]
    [Google Scholar]
  18. Nagarajan, T., Vanderleyden, J. & Tripathi, A. K. ( 2007; ). Identification of salt stress inducible genes that control cell envelope related functions in Azospirillum brasilense Sp7. Mol Genet Genomics 278, 43–51.[CrossRef]
    [Google Scholar]
  19. Newman, J. D., Falkowski, M. J., Schilke, B. A., Anthony, L. C. & Donohue, T. J. ( 1999; ). The Rhodobacter sphaeroides ECF sigma factor, σ E, and the target promoters cycA P3 and rpoE P1. J Mol Biol 294, 307–320.[CrossRef]
    [Google Scholar]
  20. Newman, J. D., Anthony, L. C. & Donohue, T. J. ( 2001; ). The importance of zinc-binding to the function of Rhodobacter sphaeroides ChrR as an anti-sigma factor. J Mol Biol 313, 485–499.[CrossRef]
    [Google Scholar]
  21. Nur, I., Yuval, L. S., Okon, Y. & Henis, Y. ( 1981; ). Carotenoid composition and function in nitrogen-fixing bacteria of the genus Azospirillum. J Gen Microbiol 122, 27–32.
    [Google Scholar]
  22. Nur, I., Okon, Y. & Henis, Y. ( 1982; ). Effect of dissolved oxygen tension on production of carotenoids, poly-β-hydroxybutyrate, succinate oxidase and superoxide dismutase by Azospirillum brasilense Cd grown in continuous culture. J Gen Microbiol 128, 2937–2943.
    [Google Scholar]
  23. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  24. Schumann, G., Nurnberger, H., Sandmann, G. & Krugel, H. ( 1996; ). Activation and analysis of cryptic crt genes for carotenoid biosynthesis from Streptomyces griseus. Mol Gen Genet 252, 658–666.
    [Google Scholar]
  25. Steenhoudt, O. & Vanderleyden, J. ( 2000; ). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24, 487–506.[CrossRef]
    [Google Scholar]
  26. Takano, H., Obitsu, S., Beppu, T. & Ueda, K. ( 2005; ). Light-induced carotenogenesis in Streptomyces coelicolor A3 (2): identification of an extra-cytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. J Bacteriol 187, 1825–1832.[CrossRef]
    [Google Scholar]
  27. Tarrand, J. J., Krieg, N. R. & Dobereiner, J. ( 1978; ). A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24, 967–980.[CrossRef]
    [Google Scholar]
  28. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  29. Vanstockem, M., Michiels, K., Vanderleyden, J. & Van Gool, A. ( 1987; ). Transposon mutagenesis of Azospirillum brasilense and Azospirillum lipoferum. Physical analysis of Tn5 and Tn5-mob insertion mutants. Appl Environ Microbiol 53, 410–415.
    [Google Scholar]
  30. Wisniewska, A. & Subczynski, W. K. ( 1998; ). Effects of polar carotenoids on the shape of the hydrophobic barrier of phospholipid bilayers. Biochim Biophys Acta 1368, 235–246.[CrossRef]
    [Google Scholar]
  31. Woese, C. R., Blanz, P., Hespell, R. B. & Hahn, C. M. ( 1982; ). Phylogenetic relationship among various helical bacteria. Curr Microbiol 7, 119–124.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/016428-0
Loading
/content/journal/micro/10.1099/mic.0.2008/016428-0
Loading

Data & Media loading...

[PDF file](42 KB)

PDF

[PDF file](124 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error