Partial redundancy in the synthesis of the -arabinose incorporated in the cell wall arabinan of Free

Abstract

The major cell wall carbohydrate of is arabinogalactan (AG), a branched polysaccharide that is essential for the physiology of these bacteria. Decaprenylphosphoryl--arabinose (DPA), the lipid donor of -arabinofuranosyl residues of AG, is synthesized through a series of unique biosynthetic steps, the last one being the epimerization of decaprenylphosphoryl---ribose (DPR) into DPA, which is believed to proceed via a sequential oxidation–reduction mechanism. Two proteins from (Rv3790 and Rv3791) have been shown to catalyse this epimerization in an system. The present study addressed the exact function of these proteins through the inactivation of the corresponding orthologues in (NCgl0187 and NCgl0186, respectively) and the analysis of their effects on AG biosynthesis. We showed that NCgl0187 is essential, whereas NCgl0186 is not. Deletion of led to a mutant possessing an AG that contained half the arabinose and rhamnose, and less corynomycolates linked to AG but more trehalose mycolates, compared with the parental strain. A candidate gene that may encode a protein functionally similar to NCgl0186 was identified in both () and (). While the deletion of had no effect on AG biosynthesis of the mutant, the gene could complement the mycolate defect of the AG of the mutant, strongly supporting the concept that the two proteins play a similar function . Consistent with this, the gene appeared to be essential in the -inactivated mutant. A detailed bioinformatics analysis showed that NCgl1429, NCgl0186, Rv3791 and Rv2073c could constitute, with 52 other proteins belonging to the actinomycetales, a group of closely related short-chain reductases/dehydrogenases (SDRs) with atypical motifs. We propose that the epimerization of DPR to DPA involves three enzymes that catalyse two distinct steps, each being essential for the viability of the bacterial cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/016378-0
2008-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/8/2315.html?itemId=/content/journal/micro/10.1099/mic.0.2008/016378-0&mimeType=html&fmt=ahah

References

  1. Alderwick L. J., Radmacher E., Seidel M., Gande R., Hitchen P. G., Dell A., Sahm H., Eggeling L., Besra G. S. 2005; Deletion of Cg-emb in Corynebacterineae leads to a novel truncated cell wall arabinogalactan, whereas inactivation of Cg-ubiA results in an arabinan deficient mutant with a cell wall galactan core. J Biol Chem 280:32362–32371
    [Google Scholar]
  2. Alderwick L. J., Dover L. G., Seidel M., Gande R., Sahm H., Eggeling L., Besra G. S. 2006a; Arabinan deficient mutants of Corynebacterium glutamicum and the consequent flux in decaprenylmonophosphoryl-d-arabinose metabolism. Glycobiology 16:1073–1081
    [Google Scholar]
  3. Alderwick L. J., Seidel M., Sahm H., Besra G. S., Eggeling L. 2006b; Identification of a novel arabinofuranosyl transferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis . J Biol Chem 281:15653–15661
    [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  5. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1987 Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  6. Besra G. S., Khoo K. H., McNeil M. R., Dell A., Morris H. R., Brennan P. J. 1995; A new interpretation of the structure of the mycolyl–arabinogalactan complex of Mycobacterium tuberculosis as revealed through characterization of oligoglycosylalditol fragments by fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. Biochemistry 34:4257–4266
    [Google Scholar]
  7. Bonamy C., Guyonvarch A., Reyes O., David F., Leblon G. 1990; Interspecies electro-transformation in Corynebacteria. FEMS Microbiol Lett 54:263–269
    [Google Scholar]
  8. Brand S., Niehaus K., Puhler A., Kalinowski J. 2003; Identification and functional analysis of six mycolyltransferase genes of Corynebacterium glutamicum ATCC 13032: the genes cop1, cmt1, and cmt2 can replace each other in the synthesis of trehalose dicorynomycolate, a component of the mycolic acid layer of the cell envelope. Arch Microbiol 180:33–44
    [Google Scholar]
  9. Daffé M. 2005; The cell envelope of corynebacteria. In Handbook of Corynebacterium glutamicum pp 121–148 Edited by Eggeling L., Bott. Boca Raton, FL: CRC Press;
    [Google Scholar]
  10. Daffé M., Draper P. 1998; The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203
    [Google Scholar]
  11. Daffé M., Lanéelle M. A., Asselineau C., Levy-Febrault V., David H. 1983; Intérêt taxonomique des acides gras des mycobactéries: proposition d'une méthode d'analyse. Ann Microbiol (Paris) 134:241–256 (in French)
    [Google Scholar]
  12. Daffé M., Brennan P. J., McNeil M. 1990; Predominant structural features of the cell wall arabinogalactan of Mycobacterium tuberculosis as revealed through characterization of oligoglycosyl alditol fragments by gas chromatography/mass spectrometry and by1H and 13C NMR analyses. J Biol Chem 265:6734–6743
    [Google Scholar]
  13. Daffé M., McNeil M., Brennan P. J. 1993; Major structural features of the cell wall arabinogalactans of Mycobacterium, Rhodococcus, and Nocardia spp. Carbohydr Res 249:383–398
    [Google Scholar]
  14. De Sousa-D'Auria C., Kacem R., Puech V., Tropis M., Leblon G., Houssin C., Daffé M. 2003; New insights into the biogenesis of the cell envelope of corynebacteria: identification and functional characterization of five new mycoloyltransferase genes in Corynebacterium glutamicum . FEMS Microbiol Lett 224:35–44
    [Google Scholar]
  15. Dong X., Bhamidi S., Scherman M., Xin Y., McNeil M. R. 2006; Development of a quantitative assay for mycobacterial endogenous arabinase and ensuing studies of arabinase levels and arabinan metabolism in Mycobacterium smegmatis . Appl Environ Microbiol 72:2601–2605
    [Google Scholar]
  16. Dover L. G., Cerdeno-Tarraga A. M., Pallen M. J., Parkhill J., Besra G. S. 2004; Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae . FEMS Microbiol Rev 28:225–250
    [Google Scholar]
  17. Dusch N., Puhler A., Kalinowski J. 1999; Expression of the Corynebacterium glutamicum panD gene encoding l-aspartate- α-decarboxylase leads to pantothenate overproduction in Escherichia coli . Appl Environ Microbiol 65:1530–1539
    [Google Scholar]
  18. Escuyer V. E., Lety M. A., Torrelles J. B., Khoo K. H., Tang J. B., Rithner C. D., Frehel C., McNeil M. R., Brennan P. J., Chatterjee D. 2001; The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J Biol Chem 276:48854–48862
    [Google Scholar]
  19. Gebhardt H., Meniche X., Tropis M., Kramer R., Daffé M., Morbach S. 2007; The key role of the mycolic acid content in the functionality of the cell wall permeability barrier in Corynebacterineae . Microbiology 153:1424–1434
    [Google Scholar]
  20. Huang H., Scherman M. S., D'Haeze W., Vereecke D., Holsters M., Crick D. C., McNeil M. R. 2005; Identification and active expression of the Mycobacterium tuberculosis gene encoding 5-phospho- α-d-ribose-1-diphosphate: decaprenyl-phosphate 5-phosphoribosyltransferase, the first enzyme committed to decaprenylphosphoryl-d-arabinose synthesis. J Biol Chem 280:24539–24543
    [Google Scholar]
  21. Jornvall H., Persson B., Krook M., Atrian S., Gonzalez-Duarte R., Jeffery J., Ghosh D. 1995; Short-chain dehydrogenases/reductases (SDR). Biochemistry 34:6003–6013
    [Google Scholar]
  22. Jornvall H., Hoog J. O., Persson B. 1999; SDR and MDR: completed genome sequences show these protein families to be large, of old origin, and of complex nature. FEBS Lett 445:261–264
    [Google Scholar]
  23. Kallberg Y., Oppermann U., Jornvall H., Persson B. 2002; Short-chain dehydrogenases/reductases (SDRs. Eur J Biochem 269:4409–4417
    [Google Scholar]
  24. McNeil M., Wallner S. J., Hunter S. W., Brennan P. J. 1987; Demonstration that the galactosyl and arabinosyl residues in the cell-wall arabinogalactan of Mycobacterium leprae and Mycobacterium tuberculosis are furanoid. Carbohydr Res 166:299–308
    [Google Scholar]
  25. McNeil M., Daffé M., Brennan P. J. 1990; Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls. J Biol Chem 265:18200–18206
    [Google Scholar]
  26. McNeil M., Daffé M., Brennan P. J. 1991; Location of the mycolyl ester substituents in the cell walls of mycobacteria. J Biol Chem 266:13217–13223
    [Google Scholar]
  27. McNeil M. R., Robuck K. G., Harter M., Brennan P. J. 1994; Enzymatic evidence for the presence of a critical terminal hexa-arabinoside in the cell walls of Mycobacterium tuberculosis . Glycobiology 4:165–173
    [Google Scholar]
  28. Mikusova K., Huang H., Yagi T., Holsters M., Vereecke D., D'Haeze W., Scherman M. S., Brennan P. J., McNeil M. R., Crick D. C. 2005; Decaprenylphosphoryl arabinofuranose, the donor of the d-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J Bacteriol 187:8020–8025
    [Google Scholar]
  29. Oppermann U., Filling C., Hult M., Shafqat N., Wu X., Lindh M., Shafqat J., Nordling E., Kallberg Y. other authors 2003; Short-chain dehydrogenases/reductases (SDR): the 2002 update. Chem Biol Interact 143:144247–253
    [Google Scholar]
  30. Persson B., Kallberg Y., Oppermann U., Jornvall H. 2003; Coenzyme-based functional assignments of short-chain dehydrogenases/reductases (SDRs). Chem Biol Interact 143:144271–278
    [Google Scholar]
  31. Peyret J. L., Bayan N., Joliff G., Gulik-Krzywicki T., Mathieu L., Schechter E., Leblon G. 1993; Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum . Mol Microbiol 9:97–109
    [Google Scholar]
  32. Portevin D., De Sousa-D'Auria C., Houssin C., Grimaldi C., Chami M., Daffé M., Guilhot C. 2004; A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci U S A 101:314–319
    [Google Scholar]
  33. Portevin D., de Sousa-D'Auria C., Montrozier H., Houssin C., Stella A., Lanéelle M. A., Bardou F., Guilhot C., Daffé M. 2005; The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components. J Biol Chem 280:8862–8874
    [Google Scholar]
  34. Puech V., Chami M., Lemassu A., Lanéelle M. A., Schiffler B., Gounon P., Bayan N., Benz R., Daffé M. 2001; Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 147:1365–1382
    [Google Scholar]
  35. Puech V., Guilhot C., Perez E., Tropis M., Armitige L. Y., Gicquel B., Daffé M. 2002; Evidence for a partial redundancy of the fibronectin-binding proteins for the transfer of mycoloyl residues onto the cell wall arabinogalactan termini of Mycobacterium tuberculosis . Mol Microbiol 44:1109–1122
    [Google Scholar]
  36. Rost B., Yachdav G., Liu J. 2004; The PredictProtein server. Nucleic Acids Res 32: (Web Server issue) W321–W326
    [Google Scholar]
  37. Sassetti C. M., Boyd D. H., Rubin E. J. 2003; Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48:77–84
    [Google Scholar]
  38. Schafer A., Tauch A., Jager W., Kalinowski J., Thierbach G., Puhler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73
    [Google Scholar]
  39. Scherman M. S., Kalbe-Bournonville L., Bush D., Xin Y., Deng L., McNeil M. 1996; Polyprenylphosphate-pentoses in mycobacteria are synthesized from 5-phosphoribose pyrophosphate. J Biol Chem 271:29652–29658
    [Google Scholar]
  40. Seidel M., Alderwick L. J., Birch H. L., Sahm H., Eggeling L., Besra G. S. 2007; Identification of a novel arabinofuranosyltransferase AftB involved in a terminal step of cell wall arabinan biosynthesis in Corynebacterineae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis . J Biol Chem 282:14729–14740
    [Google Scholar]
  41. Sweeley C. C., Bentley R., Makita M., Wells W. W. 1963; Gas–liquid chromatography of trimethysil derivatives of sugars and related substances. J Am Chem Soc 85:2497–2507
    [Google Scholar]
  42. Tropis M., Meniche X., Wolf A., Gebhardt H., Strelkov S., Chami M., Schomburg D., Krämer R., Morbach S., Daffé M. other authors 2005; The crucial role of trehalose and structurally related oligosaccharides in the biosynthesis and transfer of mycolic acids in Corynebacterineae . J Biol Chem 280:26573–26585
    [Google Scholar]
  43. Wolucka B. A., McNeil M. R., de Hoffmann E., Chojnacki T., Brennan P. J. 1994; Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J Biol Chem 269:23328–23335
    [Google Scholar]
  44. Xin Y., Lee R. E., Scherman M. S., Khoo K. H., Besra G. S., Brennan P. J., McNeil M. 1997; Characterization of the in vitro synthesized arabinan of mycobacterial cell walls. Biochim Biophys Acta 1335231–234
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/016378-0
Loading
/content/journal/micro/10.1099/mic.0.2008/016378-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed