1887

Abstract

Methyl-accepting chemotaxis proteins (MCPs) are receptors that play an important role in bacterial chemotaxis. Methylation of Tsr, the MCP that mediates chemotaxis towards serine in , is thought to be facilitated by binding of the methyltransferase to a flexible tether region at the C-terminal end of Tsr. This study analysed natural length variants of the tether that occur in due to genetic instability in tandem repeat DNA sequences that code for glutaminyl (Q) residues, creating polyQ sequences of variable lengths in the tether region. The gene of K-12 (strain MG1655) codes for 4Q at the beginning of its 35 aa tether region. The tether varies in length from 35 to 47 residues among pathogenic and non-pathogenic strains of , spp., , and . Among previous sequences, and mostly have 4Q and 7Q variants, and one strain ( HS) has 10Q. In isolated from 50 humans and 75 animals (dogs, cats, horses, birds, etc.), polyQ up to 13Q (44 aa tether) were identified (6 strains); relative frequencies were 7Q (∼77 % of the total) >4Q (14 %) >13Q (5 %) >10Q (4 %). Phylogenetic analysis revealed that strains with 10Q or 13Q largely fell within two clusters. Serine chemotaxis was not significantly different among 7Q, 10Q and 13Q strains, and was comparable to chemotaxis in the frequently studied K-12 strain. These results are consistent with models indicating that polyQ sequences from 7Q to13Q are flexible, and that longer tethers, within this range, would not change the precision of adaptation mediated by methylation. Studies of this naturally variable polyQ region in may also have relevance to mechanisms that mediate polyQ instability in human genetic diseases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2008/016303-0
2008-08-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/8/2380.html?itemId=/content/journal/micro/10.1099/mic.0.2008/016303-0&mimeType=html&fmt=ahah

References

  1. Adler, J. ( 1969; ). Chemoreceptors in bacteria. Science 166, 1588–1597.[CrossRef]
    [Google Scholar]
  2. Alexander, R. P. & Zhulin, I. B. ( 2007; ). Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors. Proc Natl Acad Sci U S A 104, 2885–2890.[CrossRef]
    [Google Scholar]
  3. Barnakov, A. N., Barnakova, L. A. & Hazelbauer, G. L. ( 1999; ). Efficient adaptational demethylation of chemoreceptors requires the same enzyme-docking site as efficient methylation. Proc Natl Acad Sci U S A 96, 10667–10672.[CrossRef]
    [Google Scholar]
  4. Bichara, M., Wagner, J. & Lambert, I. B. ( 2006; ). Mechanisms of tandem repeat instability in bacteria. Mutat Res 598, 144–163.[CrossRef]
    [Google Scholar]
  5. Chalah, A. & Weis, R. M. ( 2005; ). Site-specific and synergistic stimulation of methylation on the bacterial chemotaxis receptor Tsr by serine and CheW. BMC Microbiol 5, 12 [CrossRef]
    [Google Scholar]
  6. Duchaud, E., Rusniok, C., Frangeul, L., Buchrieser, C., Givaudan, A., Taourit, S., Bocs, S., Boursaux-Eude, C., Chandler, M. & other authors ( 2003; ). The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21, 1307–1313.[CrossRef]
    [Google Scholar]
  7. Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S., Oldfield, C. J., Campen, A. M., Ratliff, C. M. & other authors ( 2001; ). Intrinsically disordered protein. J Mol Graph Model 19, 26–59.[CrossRef]
    [Google Scholar]
  8. DuPont, H. L., Formal, S. B., Hornick, R. B., Snyder, M. J., Libonati, J. P., Sheahan, D. G., LaBrec, E. H. & Kalas, J. P. ( 1971; ). Pathogenesis of Escherichia coli diarrhea. N Engl J Med 285, 1–9.[CrossRef]
    [Google Scholar]
  9. Endres, R. G. & Wingreen, N. S. ( 2006; ). Precise adaptation in bacterial chemotaxis through “assistance neighborhoods”. Proc Natl Acad Sci U S A 103, 13040–13044.[CrossRef]
    [Google Scholar]
  10. Gosink, K. K., Burón-Barral, M. & Parkinson, J. S. ( 2006; ). Signaling interactions between the aerotaxis transducer Aer and heterologous chemoreceptors in Escherichia coli. J Bacteriol 188, 3487–3493.[CrossRef]
    [Google Scholar]
  11. Hazelbauer, G. L., Falke, J. J. & Parkinson, J. S. ( 2008; ). Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33, 9–19.[CrossRef]
    [Google Scholar]
  12. Jaworski, A., Rosche, W. A., Gellibolian, R., Kang, S., Shimizu, M., Bowater, R. P., Sinden, R. R. & Wells, R. D. ( 1995; ). Mismatch repair in Escherichia coli enhances instability of (CTG)n triplet repeats from human hereditary diseases. Proc Natl Acad Sci U S A 92, 11019–11023.[CrossRef]
    [Google Scholar]
  13. Kim, K. K., Yokota, H. & Kim, S.-H. ( 1999; ). Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400, 787–792.[CrossRef]
    [Google Scholar]
  14. Kim, S.-H., Pytlos, M. J., Rosche, W. A. & Sinden, R. R. ( 2006a; ). (CAG)/(CTG) repeats associated with neurodegenerative diseases are stable in the Escherichia coli chromosome. J Biol Chem 281, 27950–27955.[CrossRef]
    [Google Scholar]
  15. Kim, S. H., Pytlos, M. J. & Sinden, R. R. ( 2006b; ). Replication restart: a pathway for (CTG).(CAG) repeat deletion in Escherichia coli. Mutat Res 595, 5–22.[CrossRef]
    [Google Scholar]
  16. Lai, W.-C. & Hazelbauer, G. L. ( 2005; ). Carboxyl-terminal extensions beyond the conserved pentapeptide reduce rates of chemoreceptor adaptational modification. J Bacteriol 187, 5115–5121.[CrossRef]
    [Google Scholar]
  17. Le Moual, H. & Koshland, D. E., Jr ( 1996; ). Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J Mol Biol 261, 568–585.[CrossRef]
    [Google Scholar]
  18. Levine, M. M., Bergquist, E. J., Nalin, D. R., Waterman, D. H., Hornick, R. B., Young, C. R., Sotman, S. & Rowe, B. ( 1978; ). Escherichia coli strains that cause diarrhoea but do not produce heat-labile or heat-stable enterotoxins and are non-invasive. Lancet 1, 1119–1122.
    [Google Scholar]
  19. Li, M. & Hazelbauer, G. L. ( 2005; ). Adaptational assistance in clusters of bacterial chemoreceptors. Mol Microbiol 56, 1617–1626.[CrossRef]
    [Google Scholar]
  20. Li, M. & Hazelbauer, G. L. ( 2006; ). The carboxyl-terminal linker is important for chemoreceptor function. Mol Microbiol 60, 469–479.[CrossRef]
    [Google Scholar]
  21. Maddock, J. R. & Shapiro, L. ( 1993; ). Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259, 1717–1723.[CrossRef]
    [Google Scholar]
  22. Mrazek, J., Guo, X. & Shah, A. ( 2007; ). Simple sequence repeats in prokaryotic genomes. Proc Natl Acad Sci U S A 104, 8472–8477.[CrossRef]
    [Google Scholar]
  23. NCBI Microbial Genomes Annotation Project ( 2005; ). COG0840: Methyl-accepting chemotaxis protein [Escherichia coli HS]. Genbank Accession: ZP_00708242.1 GI:75198172.
  24. Pupo, G. M., Lan, R. & Reeves, P. R. ( 2000; ). Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci U S A 97, 10567–10572.[CrossRef]
    [Google Scholar]
  25. Ram, J. L., Ritchie, R. P., Fang, J., Gonzales, F. & Selegean, J. P. ( 2004; ). Sequence-based source tracking of Escherichia coli based on genetic diversity of beta-glucuronidase. J Environ Qual 33, 1024–1033.[CrossRef]
    [Google Scholar]
  26. Ram, J. L., Thompson, B., Turner, C., Nechvatal, J. M., Sheehan, H. & Bobrin, J. ( 2007; ). Identification of pets and raccoons as sources of bacterial contamination of urban storm sewers using a sequence-based bacterial source tracking method. Water Res 41, 3605–3614.[CrossRef]
    [Google Scholar]
  27. Rice, M. S. & Dahlquist, F. W. ( 1991; ). Sites of deamidation and methylation, a bacterial chemotaxis sensory transducer. J Biol Chem 266, 9746–9753.
    [Google Scholar]
  28. Springer, M. S., Goy, M. F. & Adler, J. ( 1979; ). Protein methylation in behavioural control mechanisms and in signal transduction. Nature 280, 279–284.[CrossRef]
    [Google Scholar]
  29. Studdert, C. A. & Parkinson, J. S. ( 2004; ). Crosslinking snapshots of bacterial chemoreceptor squads. Proc Natl Acad Sci U S A 101, 2117–2122.[CrossRef]
    [Google Scholar]
  30. Studdert, C. A. & Parkinson, J. S. ( 2005; ). Insights into the organization and dynamics of bacterial chemoreceptor clusters through in vivo crosslinking studies. Proc Natl Acad Sci U S A 102, 15623–15628.[CrossRef]
    [Google Scholar]
  31. Wu, J., Li, J., Li, G., Long, D. G. & Weis, R. M. ( 1996; ). The receptor binding site for the methyltransferase of bacterial chemotaxis is distinct from the sites of methylation. Biochemistry 35, 4984–4993.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2008/016303-0
Loading
/content/journal/micro/10.1099/mic.0.2008/016303-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error