The mosaic structure of the operon in Free

Abstract

An extensive study of the genes and regions flanking the gene cluster was performed in naturally occurring strains. Lack of methylation in strains producing only desmethyl-microcystin was found to be associated with point mutations in substrate-binding sequence motifs of the -methyltransferase (NMT) domain in McyA. Multiple recombination events giving rise to ‘phylogenetic mosaics’ were detected within the -domain-encoding sequences and the adenylation (A) domain sequences of and . Recombination leading to exchanges between the and regions encoding A domains in modules McyB1 and McyC was also detected. A previously reported replacement of the A domain in McyB1 was found to involve the region between the conserved motifs A3 and A8/A9. In all microcystin-producing strains the gene cluster was flanked by the genes and . Clear indications of recombination, an insertion element and footprints of IS elements were found in the intergenic region. Among the non-microcystin producers, and were linked in some, but not all strains. Most non-producing strains lacked all genes, while one strain possessed a partially deleted operon. Our results show that frequent horizontal gene transfer events in addition to point mutations and insertions/deletions contribute to variation in the gene cluster.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015875-0
2008-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/7/1886.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015875-0&mimeType=html&fmt=ahah

References

  1. Bruen T. C., Philippe H., Bryant D. 2006; A simple and robust statistical test for detecting the presence of recombination. Genetics 172:2665–2681
    [Google Scholar]
  2. Christiansen G., Fastner J., Erhard M., Börner T., Dittmann E. 2003; Microcystin biosynthesis in Planktothrix: genes, evolution, and manipulation. J Bacteriol 185:564–572
    [Google Scholar]
  3. Christiansen G., Kurmayer R., Liu Q., Börner T. 2006; Transposons inactivate biosynthesis of the nonribosomal peptide microcystin in naturally occurring Planktothrix spp. Appl Environ Microbiol 72:117–123
    [Google Scholar]
  4. Dittmann E., Neilan B. A., Erhard M., von Döhren H., Börner T. 1997; Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol Microbiol 26:779–787
    [Google Scholar]
  5. Espelund M., Stacy R. A., Jakobsen K. S. 1990; A simple method for generating single-stranded DNA probes labeled to high activities. Nucleic Acids Res 18:6157–6158
    [Google Scholar]
  6. Fewer D. P., Rouhiainen L., Jokela J., Wahlsten M., Laakso K., Wang H., Sivonen K. 2007; Recurrent adenylation domain replacement in the microcystin synthetase gene cluster. BMC Evol Biol 7:183
    [Google Scholar]
  7. Fewer D. P., Tooming-Klunderud A., Jokela J., Wahlsten M., Rouhiainen L., Kristensen T., Rohrlack T., Jakobsen K. S., Sivonen K. 2008; Natural occurrence of microcystin synthetase deletion mutants capable of producing microcystins in strains of the genus Anabaena (Cyanobacteria. Microbiology 154:1007–1014
    [Google Scholar]
  8. Galau G. A., Hughes D. W., Dure L. III 1986; Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Mol Biol 7:155–177
    [Google Scholar]
  9. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704
    [Google Scholar]
  10. Huson D. H., Bryant D. 2006; Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267
    [Google Scholar]
  11. Kaneko T., Tanaka A., Sato S., Kotani H., Sazuka T., Miyajima N., Sugiura M., Tabata S. 1995; Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64 % to 92 % of the genome. DNA Res 2:153–166
    [Google Scholar]
  12. Kumar S., Tamura K., Nei M. 2004; MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163
    [Google Scholar]
  13. Kurmayer R., Gumpenberger M. 2006; Diversity of microcystin genotypes among populations of the filamentous cyanobacteria Planktothrix rubescens and Planktothrix agardhii. Mol Ecol 15:3849–3861
    [Google Scholar]
  14. Kurmayer R., Christiansen G., Fastner J., Börner T. 2004; Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ Microbiol 6:831–841
    [Google Scholar]
  15. Kurmayer R., Christiansen G., Gumpenberger M., Fastner J. 2005; Genetic identification of microcystin ecotypes in toxic cyanobacteria of the genus Planktothrix. Microbiology 151:1525–1533
    [Google Scholar]
  16. Mahillon J., Chandler M. 1998; Insertion sequences. Microbiol Mol Biol Rev 62:725–774
    [Google Scholar]
  17. Marahiel M. A., Stachelhaus T., Mootz H. D. 1997; Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97:2651–2674
    [Google Scholar]
  18. Martin D. P., Williamson C., Posada D. 2005; RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262
    [Google Scholar]
  19. Mikalsen B., Boison G., Skulberg O. M., Fastner J., Davies W., Gabrielsen T. M., Rudi K., Jakobsen K. S. 2003; Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J Bacteriol 185:2774–2785
    [Google Scholar]
  20. Nishizawa T., Asayama M., Fujii K., Harada K., Shirai M. 1999; Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. J Biochem 126:520–529
    [Google Scholar]
  21. Nishizawa T., Ueda A., Asayama M., Fujii K., Harada K., Ochi K., Shirai M. 2000; Polyketide synthase gene coupled to the peptide synthetase module involved in the biosynthesis of the cyclic heptapeptide microcystin. J Biochem 127:779–789
    [Google Scholar]
  22. Nishizawa T., Nishizawa A., Asayama M., Harada K., Shirai M. 2007; Diversity within the microcystin biosynthetic gene clusters among the genus Microcystis. Microbes Environ 22:380–390
    [Google Scholar]
  23. Nylander J. A. A. 2004 MrModeltest v2. Program distributed by the author Evolutionary Biology Centre, Uppsala University;
    [Google Scholar]
  24. Padidam M., Sawyer S., Fauquet C. M. 1999; Possible emergence of new geminiviruses by frequent recombination. Virology 265:218–225
    [Google Scholar]
  25. Papke R. T., Zhaxybayeva O., Feil E. J., Sommerfeld K., Muise D., Doolittle W. F. 2007; Searching for species in haloarchaea. Proc Natl Acad Sci U S A 104:14092–14097
    [Google Scholar]
  26. Patel H. M., Walsh C. T. 2001; In vitro reconstitution of the Pseudomonas aeruginosa nonribosomal peptide synthesis of pyochelin: characterization of backbone tailoring thiazoline reductase and N-methyltransferase activities. Biochemistry 40:9023–9031
    [Google Scholar]
  27. Rantala A., Fewer D. P., Hisbergues M., Rouhiainen L., Vaitomaa J., Börner T., Sivonen K. 2004; Phylogenetic evidence for the early evolution of microcystin synthesis. Proc Natl Acad Sci U S A 101:568–573
    [Google Scholar]
  28. Ronquist F., Huelsenbeck J. 2003; MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574
    [Google Scholar]
  29. Rouhiainen L., Vakkilainen T., Siemer B. L., Buikema W., Haselkorn R., Sivonen K. 2004; Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl Environ Microbiol 70:686–692
    [Google Scholar]
  30. Rudi K., Skulberg O. M., Jakobsen K. S. 1998; Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacteriol 180:3453–3461
    [Google Scholar]
  31. Skulberg R., Skulberg O. M. 1990 Research with Algal Cultures. NIVA's Culture Collection of Algae. Oslo: Norway;
    [Google Scholar]
  32. Tanabe Y., Kaya K., Watanabe M. M. 2004; Evidence for recombination in the microcystin synthetase ( mcy) genes of toxic cyanobacteria Microcystis spp. J Mol Evol 58:633–641
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882
    [Google Scholar]
  34. Tillett D., Dittmann E., Erhard M., von Döhren H., Börner T., Neilan B. A. 2000; Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7:753–764
    [Google Scholar]
  35. Tillett D., Parker D. L., Neilan B. A. 2001; Detection of toxigenicity by a probe for the microcystin synthetase A gene ( mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (Phycocyanin Intergenic Spacer) phylogenies. Appl Environ Microbiol 67:2810–2818
    [Google Scholar]
  36. Velkov T., Lawen A. 2003; Mapping and molecular modeling of S-adenosyl-l-methionine binding sites in N-methyltransferase domains of the multifunctional polypeptide cyclosporin synthetase. J Biol Chem 278:1137–1148
    [Google Scholar]
  37. Welker M., von Döhren H. 2006; Cyanobacterial peptides – nature's own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563
    [Google Scholar]
  38. Zhaxybayeva O., Gogarten J. P., Charlebois R. L., Doolittle W. F., Papke R. T. 2006; Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res 16:1099–1108
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015875-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015875-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed