1887

Abstract

An extensive study of the genes and regions flanking the gene cluster was performed in naturally occurring strains. Lack of methylation in strains producing only desmethyl-microcystin was found to be associated with point mutations in substrate-binding sequence motifs of the -methyltransferase (NMT) domain in McyA. Multiple recombination events giving rise to ‘phylogenetic mosaics’ were detected within the -domain-encoding sequences and the adenylation (A) domain sequences of and . Recombination leading to exchanges between the and regions encoding A domains in modules McyB1 and McyC was also detected. A previously reported replacement of the A domain in McyB1 was found to involve the region between the conserved motifs A3 and A8/A9. In all microcystin-producing strains the gene cluster was flanked by the genes and . Clear indications of recombination, an insertion element and footprints of IS elements were found in the intergenic region. Among the non-microcystin producers, and were linked in some, but not all strains. Most non-producing strains lacked all genes, while one strain possessed a partially deleted operon. Our results show that frequent horizontal gene transfer events in addition to point mutations and insertions/deletions contribute to variation in the gene cluster.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015875-0
2008-07-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/7/1886.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015875-0&mimeType=html&fmt=ahah

References

  1. Bruen, T. C., Philippe, H. & Bryant, D. ( 2006; ). A simple and robust statistical test for detecting the presence of recombination. Genetics 172, 2665–2681.
    [Google Scholar]
  2. Christiansen, G., Fastner, J., Erhard, M., Börner, T. & Dittmann, E. ( 2003; ). Microcystin biosynthesis in Planktothrix: genes, evolution, and manipulation. J Bacteriol 185, 564–572.[CrossRef]
    [Google Scholar]
  3. Christiansen, G., Kurmayer, R., Liu, Q. & Börner, T. ( 2006; ). Transposons inactivate biosynthesis of the nonribosomal peptide microcystin in naturally occurring Planktothrix spp. Appl Environ Microbiol 72, 117–123.[CrossRef]
    [Google Scholar]
  4. Dittmann, E., Neilan, B. A., Erhard, M., von Döhren, H. & Börner, T. ( 1997; ). Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol Microbiol 26, 779–787.[CrossRef]
    [Google Scholar]
  5. Espelund, M., Stacy, R. A. & Jakobsen, K. S. ( 1990; ). A simple method for generating single-stranded DNA probes labeled to high activities. Nucleic Acids Res 18, 6157–6158.[CrossRef]
    [Google Scholar]
  6. Fewer, D. P., Rouhiainen, L., Jokela, J., Wahlsten, M., Laakso, K., Wang, H. & Sivonen, K. ( 2007; ). Recurrent adenylation domain replacement in the microcystin synthetase gene cluster. BMC Evol Biol 7, 183 [CrossRef]
    [Google Scholar]
  7. Fewer, D. P., Tooming-Klunderud, A., Jokela, J., Wahlsten, M., Rouhiainen, L., Kristensen, T., Rohrlack, T., Jakobsen, K. S. & Sivonen, K. ( 2008; ). Natural occurrence of microcystin synthetase deletion mutants capable of producing microcystins in strains of the genus Anabaena (Cyanobacteria). Microbiology 154, 1007–1014.[CrossRef]
    [Google Scholar]
  8. Galau, G. A., Hughes, D. W. & Dure, L., III ( 1986; ). Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Mol Biol 7, 155–177.[CrossRef]
    [Google Scholar]
  9. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  10. Huson, D. H. & Bryant, D. ( 2006; ). Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23, 254–267.
    [Google Scholar]
  11. Kaneko, T., Tanaka, A., Sato, S., Kotani, H., Sazuka, T., Miyajima, N., Sugiura, M. & Tabata, S. ( 1995; ). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64 % to 92 % of the genome. DNA Res 2, 153–166.[CrossRef]
    [Google Scholar]
  12. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  13. Kurmayer, R. & Gumpenberger, M. ( 2006; ). Diversity of microcystin genotypes among populations of the filamentous cyanobacteria Planktothrix rubescens and Planktothrix agardhii. Mol Ecol 15, 3849–3861.[CrossRef]
    [Google Scholar]
  14. Kurmayer, R., Christiansen, G., Fastner, J. & Börner, T. ( 2004; ). Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ Microbiol 6, 831–841.[CrossRef]
    [Google Scholar]
  15. Kurmayer, R., Christiansen, G., Gumpenberger, M. & Fastner, J. ( 2005; ). Genetic identification of microcystin ecotypes in toxic cyanobacteria of the genus Planktothrix. Microbiology 151, 1525–1533.[CrossRef]
    [Google Scholar]
  16. Mahillon, J. & Chandler, M. ( 1998; ). Insertion sequences. Microbiol Mol Biol Rev 62, 725–774.
    [Google Scholar]
  17. Marahiel, M. A., Stachelhaus, T. & Mootz, H. D. ( 1997; ). Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97, 2651–2674.[CrossRef]
    [Google Scholar]
  18. Martin, D. P., Williamson, C. & Posada, D. ( 2005; ). RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21, 260–262.[CrossRef]
    [Google Scholar]
  19. Mikalsen, B., Boison, G., Skulberg, O. M., Fastner, J., Davies, W., Gabrielsen, T. M., Rudi, K. & Jakobsen, K. S. ( 2003; ). Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J Bacteriol 185, 2774–2785.[CrossRef]
    [Google Scholar]
  20. Nishizawa, T., Asayama, M., Fujii, K., Harada, K. & Shirai, M. ( 1999; ). Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. J Biochem 126, 520–529.[CrossRef]
    [Google Scholar]
  21. Nishizawa, T., Ueda, A., Asayama, M., Fujii, K., Harada, K., Ochi, K. & Shirai, M. ( 2000; ). Polyketide synthase gene coupled to the peptide synthetase module involved in the biosynthesis of the cyclic heptapeptide microcystin. J Biochem 127, 779–789.[CrossRef]
    [Google Scholar]
  22. Nishizawa, T., Nishizawa, A., Asayama, M., Harada, K. & Shirai, M. ( 2007; ). Diversity within the microcystin biosynthetic gene clusters among the genus Microcystis. Microbes Environ 22, 380–390.[CrossRef]
    [Google Scholar]
  23. Nylander, J. A. A. ( 2004; ). MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
  24. Padidam, M., Sawyer, S. & Fauquet, C. M. ( 1999; ). Possible emergence of new geminiviruses by frequent recombination. Virology 265, 218–225.[CrossRef]
    [Google Scholar]
  25. Papke, R. T., Zhaxybayeva, O., Feil, E. J., Sommerfeld, K., Muise, D. & Doolittle, W. F. ( 2007; ). Searching for species in haloarchaea. Proc Natl Acad Sci U S A 104, 14092–14097.[CrossRef]
    [Google Scholar]
  26. Patel, H. M. & Walsh, C. T. ( 2001; ). In vitro reconstitution of the Pseudomonas aeruginosa nonribosomal peptide synthesis of pyochelin: characterization of backbone tailoring thiazoline reductase and N-methyltransferase activities. Biochemistry 40, 9023–9031.[CrossRef]
    [Google Scholar]
  27. Rantala, A., Fewer, D. P., Hisbergues, M., Rouhiainen, L., Vaitomaa, J., Börner, T. & Sivonen, K. ( 2004; ). Phylogenetic evidence for the early evolution of microcystin synthesis. Proc Natl Acad Sci U S A 101, 568–573.[CrossRef]
    [Google Scholar]
  28. Ronquist, F. & Huelsenbeck, J. ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  29. Rouhiainen, L., Vakkilainen, T., Siemer, B. L., Buikema, W., Haselkorn, R. & Sivonen, K. ( 2004; ). Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl Environ Microbiol 70, 686–692.[CrossRef]
    [Google Scholar]
  30. Rudi, K., Skulberg, O. M. & Jakobsen, K. S. ( 1998; ). Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacteriol 180, 3453–3461.
    [Google Scholar]
  31. Skulberg, R. & Skulberg, O. M. ( 1990; ). Research with Algal Cultures. NIVA's Culture Collection of Algae. Oslo: Norway.
  32. Tanabe, Y., Kaya, K. & Watanabe, M. M. ( 2004; ). Evidence for recombination in the microcystin synthetase (mcy) genes of toxic cyanobacteria Microcystis spp. J Mol Evol 58, 633–641.[CrossRef]
    [Google Scholar]
  33. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  34. Tillett, D., Dittmann, E., Erhard, M., von Döhren, H., Börner, T. & Neilan, B. A. ( 2000; ). Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 7, 753–764.[CrossRef]
    [Google Scholar]
  35. Tillett, D., Parker, D. L. & Neilan, B. A. ( 2001; ). Detection of toxigenicity by a probe for the microcystin synthetase A gene (mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (Phycocyanin Intergenic Spacer) phylogenies. Appl Environ Microbiol 67, 2810–2818.[CrossRef]
    [Google Scholar]
  36. Velkov, T. & Lawen, A. ( 2003; ). Mapping and molecular modeling of S-adenosyl-l-methionine binding sites in N-methyltransferase domains of the multifunctional polypeptide cyclosporin synthetase. J Biol Chem 278, 1137–1148.[CrossRef]
    [Google Scholar]
  37. Welker, M. & von Döhren, H. ( 2006; ). Cyanobacterial peptides – nature's own combinatorial biosynthesis. FEMS Microbiol Rev 30, 530–563.[CrossRef]
    [Google Scholar]
  38. Zhaxybayeva, O., Gogarten, J. P., Charlebois, R. L., Doolittle, W. F. & Papke, R. T. ( 2006; ). Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res 16, 1099–1108.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015875-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015875-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1886 - 1899

[ PDF] (723 kb). The file includes: PCR and sequencing primers used. Alignment of informative sites in the NMT-domain of and in the A-domain coding regions of and . Phylogenetic analysis of the nucleotide sequences encoding the adenylation domains of McyC and McyB1. Intergenic spacer between and .



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error