1887

Abstract

An extensive study of the genes and regions flanking the gene cluster was performed in naturally occurring strains. Lack of methylation in strains producing only desmethyl-microcystin was found to be associated with point mutations in substrate-binding sequence motifs of the -methyltransferase (NMT) domain in McyA. Multiple recombination events giving rise to ‘phylogenetic mosaics’ were detected within the -domain-encoding sequences and the adenylation (A) domain sequences of and . Recombination leading to exchanges between the and regions encoding A domains in modules McyB1 and McyC was also detected. A previously reported replacement of the A domain in McyB1 was found to involve the region between the conserved motifs A3 and A8/A9. In all microcystin-producing strains the gene cluster was flanked by the genes and . Clear indications of recombination, an insertion element and footprints of IS elements were found in the intergenic region. Among the non-microcystin producers, and were linked in some, but not all strains. Most non-producing strains lacked all genes, while one strain possessed a partially deleted operon. Our results show that frequent horizontal gene transfer events in addition to point mutations and insertions/deletions contribute to variation in the gene cluster.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015875-0
2008-07-01
2020-07-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/7/1886.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015875-0&mimeType=html&fmt=ahah

References

  1. Bruen T. C., Philippe H., Bryant D.. 2006; A simple and robust statistical test for detecting the presence of recombination. Genetics172:2665–2681
    [Google Scholar]
  2. Christiansen G., Fastner J., Erhard M., Börner T., Dittmann E.. 2003; Microcystin biosynthesis in Planktothrix: genes, evolution, and manipulation. J Bacteriol185:564–572
    [Google Scholar]
  3. Christiansen G., Kurmayer R., Liu Q., Börner T.. 2006; Transposons inactivate biosynthesis of the nonribosomal peptide microcystin in naturally occurring Planktothrix spp. Appl Environ Microbiol72:117–123
    [Google Scholar]
  4. Dittmann E., Neilan B. A., Erhard M., von Döhren H., Börner T.. 1997; Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol Microbiol26:779–787
    [Google Scholar]
  5. Espelund M., Stacy R. A., Jakobsen K. S.. 1990; A simple method for generating single-stranded DNA probes labeled to high activities. Nucleic Acids Res18:6157–6158
    [Google Scholar]
  6. Fewer D. P., Rouhiainen L., Jokela J., Wahlsten M., Laakso K., Wang H., Sivonen K.. 2007; Recurrent adenylation domain replacement in the microcystin synthetase gene cluster. BMC Evol Biol7:183
    [Google Scholar]
  7. Fewer D. P., Tooming-Klunderud A., Jokela J., Wahlsten M., Rouhiainen L., Kristensen T., Rohrlack T., Jakobsen K. S., Sivonen K.. 2008; Natural occurrence of microcystin synthetase deletion mutants capable of producing microcystins in strains of the genus Anabaena (Cyanobacteria. Microbiology154:1007–1014
    [Google Scholar]
  8. Galau G. A., Hughes D. W., Dure L. III. 1986; Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Mol Biol7:155–177
    [Google Scholar]
  9. Guindon S., Gascuel O.. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol52:696–704
    [Google Scholar]
  10. Huson D. H., Bryant D.. 2006; Application of phylogenetic networks in evolutionary studies. Mol Biol Evol23:254–267
    [Google Scholar]
  11. Kaneko T., Tanaka A., Sato S., Kotani H., Sazuka T., Miyajima N., Sugiura M., Tabata S.. 1995; Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64 % to 92 % of the genome. DNA Res2:153–166
    [Google Scholar]
  12. Kumar S., Tamura K., Nei M.. 2004; MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform5:150–163
    [Google Scholar]
  13. Kurmayer R., Gumpenberger M.. 2006; Diversity of microcystin genotypes among populations of the filamentous cyanobacteria Planktothrix rubescens and Planktothrix agardhii. Mol Ecol15:3849–3861
    [Google Scholar]
  14. Kurmayer R., Christiansen G., Fastner J., Börner T.. 2004; Abundance of active and inactive microcystin genotypes in populations of the toxic cyanobacterium Planktothrix spp. Environ Microbiol6:831–841
    [Google Scholar]
  15. Kurmayer R., Christiansen G., Gumpenberger M., Fastner J.. 2005; Genetic identification of microcystin ecotypes in toxic cyanobacteria of the genus Planktothrix. Microbiology151:1525–1533
    [Google Scholar]
  16. Mahillon J., Chandler M.. 1998; Insertion sequences. Microbiol Mol Biol Rev62:725–774
    [Google Scholar]
  17. Marahiel M. A., Stachelhaus T., Mootz H. D.. 1997; Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev97:2651–2674
    [Google Scholar]
  18. Martin D. P., Williamson C., Posada D.. 2005; RDP2: recombination detection and analysis from sequence alignments. Bioinformatics21:260–262
    [Google Scholar]
  19. Mikalsen B., Boison G., Skulberg O. M., Fastner J., Davies W., Gabrielsen T. M., Rudi K., Jakobsen K. S.. 2003; Natural variation in the microcystin synthetase operon mcyABC and impact on microcystin production in Microcystis strains. J Bacteriol185:2774–2785
    [Google Scholar]
  20. Nishizawa T., Asayama M., Fujii K., Harada K., Shirai M.. 1999; Genetic analysis of the peptide synthetase genes for a cyclic heptapeptide microcystin in Microcystis spp. J Biochem126:520–529
    [Google Scholar]
  21. Nishizawa T., Ueda A., Asayama M., Fujii K., Harada K., Ochi K., Shirai M.. 2000; Polyketide synthase gene coupled to the peptide synthetase module involved in the biosynthesis of the cyclic heptapeptide microcystin. J Biochem127:779–789
    [Google Scholar]
  22. Nishizawa T., Nishizawa A., Asayama M., Harada K., Shirai M.. 2007; Diversity within the microcystin biosynthetic gene clusters among the genus Microcystis. Microbes Environ22:380–390
    [Google Scholar]
  23. Nylander J. A. A.. 2004; MrModeltest v2. Program distributed by the author Evolutionary Biology Centre, Uppsala University;
    [Google Scholar]
  24. Padidam M., Sawyer S., Fauquet C. M.. 1999; Possible emergence of new geminiviruses by frequent recombination. Virology265:218–225
    [Google Scholar]
  25. Papke R. T., Zhaxybayeva O., Feil E. J., Sommerfeld K., Muise D., Doolittle W. F.. 2007; Searching for species in haloarchaea. Proc Natl Acad Sci U S A104:14092–14097
    [Google Scholar]
  26. Patel H. M., Walsh C. T.. 2001; In vitro reconstitution of the Pseudomonas aeruginosa nonribosomal peptide synthesis of pyochelin: characterization of backbone tailoring thiazoline reductase and N-methyltransferase activities. Biochemistry40:9023–9031
    [Google Scholar]
  27. Rantala A., Fewer D. P., Hisbergues M., Rouhiainen L., Vaitomaa J., Börner T., Sivonen K.. 2004; Phylogenetic evidence for the early evolution of microcystin synthesis. Proc Natl Acad Sci U S A101:568–573
    [Google Scholar]
  28. Ronquist F., Huelsenbeck J.. 2003; MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics19:1572–1574
    [Google Scholar]
  29. Rouhiainen L., Vakkilainen T., Siemer B. L., Buikema W., Haselkorn R., Sivonen K.. 2004; Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl Environ Microbiol70:686–692
    [Google Scholar]
  30. Rudi K., Skulberg O. M., Jakobsen K. S.. 1998; Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacteriol180:3453–3461
    [Google Scholar]
  31. Skulberg R., Skulberg O. M.. 1990; Research with Algal Cultures. NIVA's Culture Collection of Algae. Oslo: Norway;
    [Google Scholar]
  32. Tanabe Y., Kaya K., Watanabe M. M.. 2004; Evidence for recombination in the microcystin synthetase ( mcy) genes of toxic cyanobacteria Microcystis spp. J Mol Evol58:633–641
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The CLUSTAL_X Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882
    [Google Scholar]
  34. Tillett D., Dittmann E., Erhard M., von Döhren H., Börner T., Neilan B. A.. 2000; Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol7:753–764
    [Google Scholar]
  35. Tillett D., Parker D. L., Neilan B. A.. 2001; Detection of toxigenicity by a probe for the microcystin synthetase A gene ( mcyA) of the cyanobacterial genus Microcystis: comparison of toxicities with 16S rRNA and phycocyanin operon (Phycocyanin Intergenic Spacer) phylogenies. Appl Environ Microbiol67:2810–2818
    [Google Scholar]
  36. Velkov T., Lawen A.. 2003; Mapping and molecular modeling of S-adenosyl-l-methionine binding sites in N-methyltransferase domains of the multifunctional polypeptide cyclosporin synthetase. J Biol Chem278:1137–1148
    [Google Scholar]
  37. Welker M., von Döhren H.. 2006; Cyanobacterial peptides – nature's own combinatorial biosynthesis. FEMS Microbiol Rev30:530–563
    [Google Scholar]
  38. Zhaxybayeva O., Gogarten J. P., Charlebois R. L., Doolittle W. F., Papke R. T.. 2006; Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene transfer events. Genome Res16:1099–1108
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015875-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015875-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error