1887

Abstract

Staphylococcal biofilm formation depends on the transcription factor . We further investigated the role of in biofilm formation and persistence and in a subcutaneous rat model. As expected, expression of all operon genes was transiently higher in the first 6 h of biofilm formation compared to planktonic bacteria, concurrent with a temporary upregulation of and expression. However, we also observed a second upregulation of expression in biofilm more than 2 days old without upregulation of or . Biofilm formation by strains 8400 and 1457 was compared to that of isogenic mutants with inactivation of , of and of the entire operon. Both wild-type strains and the constitutively expressing mutant showed a strong biofilm-positive phenotype. The mutant biofilm was, however, thinner and more evenly spread than the wild-type biofilm. Inactivation of SigB in the mutant or mutation of the positive regulator RsbU reduced both the number of sessile bacteria and polysaccharide intercellular adhesin (PIA) synthesis. These differences between the wild-types and their respective mutants appeared after 6 h in biofilms but only after 4 days in biofilms. Our results provide additional evidence for a role for in biofilm formation. They also suggest a role for in biofilm maturation and stability that is independent of PIA or accumulation-associated protein (Aap) and point to significant differences in the temporal development between and biofilms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015768-0
2008-09-01
2020-07-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/9/2827.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015768-0&mimeType=html&fmt=ahah

References

  1. Bischoff M., Dunman P., Kormanec J., Macapagal D., Murphy E., Mounts W., Berger-Bachi B., Projan S.. 2004; Microarray-based analysis of the Staphylococcus aureus σ B regulon. J Bacteriol186:4085–4099
    [Google Scholar]
  2. Blevins J. S., Beenken K. E., Elasri M. O., Hurlburt B. K., Smeltzer M. S.. 2002; Strain-dependent differences in the regulatory roles of sarA and agr in Staphylococcus aureus . Infect Immun70:470–480
    [Google Scholar]
  3. Conlon K. M., Humphreys H., O'Gara J. P.. 2002; IcaR encodes a transcriptional repressor involved in environmental regulation of ica operon expression and biofilm formation in Staphylococcus epidermidis . J Bacteriol184:4400–4408
    [Google Scholar]
  4. Costerton J. W., Stewart P. S., Greenberg E. P.. 1999; Bacterial biofilms: a common cause of persistent infections. Science284:1318–1322
    [Google Scholar]
  5. Dunne W. M. Jr. 2002; Bacterial adhesion: seen any good biofilms lately?. Clin Microbiol Rev15:155–166
    [Google Scholar]
  6. Fouet A., Namy O., Lambert G.. 2000; Characterization of the operon encoding the alternative sigma B factor from Bacillus anthracis and its role in virulence. J Bacteriol182:5036–5045
    [Google Scholar]
  7. Gerke C., Kraft A., Sussmuth R., Schweitzer O., Gotz F.. 1998; Characterization of the N -acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem273:18586–18593
    [Google Scholar]
  8. Heilmann C., Hussain M., Peters G., Gotz F.. 1997; Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol24:1013–1024
    [Google Scholar]
  9. Hussain M., Hastings J. G. M., White P. J.. 1992; Comparison of cell-wall teichoic-acid with high-molecular-weight extracellular slime material from Staphylococcus epidermidis . J Med Microbiol37:368–375
    [Google Scholar]
  10. Hussain M., Herrmann M., von Eiff C., Perdreau-Remington F., Peters G.. 1997; A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun65:519–524
    [Google Scholar]
  11. Jager S., Mack D., Rohde H., Horstkotte M. A., Knobloch J. K. M.. 2005; Disintegration of Staphylococcus epidermidis biofilms under glucose-limiting conditions depends on the activity of the alternative sigma factor σ B. Appl Environ Microbiol71:5577–5581
    [Google Scholar]
  12. Kies S., Otto M. L., Vuong C., Gotz F.. 2001; Identification of the sigB operon in Staphylococcus epidermidis : construction and characterization of a sigB deletion mutant. Infect Immun69:7933–7936
    [Google Scholar]
  13. Knobloch J. K. M., Bartscht K., Sabottke A., Rohde H., Feucht H. H., Mack D.. 2001; Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol183:2624–2633
    [Google Scholar]
  14. Knobloch J. K. M., Jager S., Horstkotte M. A., Rohde H., Mack D.. 2004; RsbU-dependent regulation of Staphylococcus epidermidis biofilm formation is mediated via the alternative sigma factor σ B by repression of the negative regulator gene icaR . Infect Immun72:3838–3848
    [Google Scholar]
  15. Mack D., Siemssen N., Laufs R.. 1992; Parallel induction by glucose of adherence and a polysaccharide antigen specific for plastic-adherent Staphylococcus epidermidis : evidence for functional relation to intercellular adhesion. Infect Immun60:2048–2057
    [Google Scholar]
  16. Mack D., Fischer W., Krokotsch A., Leopold K., Hartmann R., Egge H., Laufs R.. 1996; The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol178:175–183
    [Google Scholar]
  17. Mack D., Rohde H., Dobinsky S., Riedewald J., Nedelmann M., Knobloch J. K. M., Elsner H. A., Feucht H. H.. 2000; Identification of three essential regulatory gene loci governing expression of Staphylococcus epidermidis polysaccharide intercellular adhesin and biofilm formation. Infect Immun68:3799–3807
    [Google Scholar]
  18. Mack D., Davies A. P., Harris L. G., Rohde H., Horstkotte M. A., Knobloch J. K. M.. 2007; Microbial interactions in Staphylococcus epidermidis biofilms. Anal Bioanal Chem387:399–408
    [Google Scholar]
  19. Muller E., Hubner J., Gutierrez N., Takeda S., Goldmann D. A., Pier G. B.. 1993; Isolation and characterization of transposon mutants of Staphylococcus epidermidis deficient in capsular polysaccharide adhesin and slime. Infect Immun61:551–558
    [Google Scholar]
  20. O'Gara J. P.. 2007; ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus . FEMS Microbiol Lett270:179–188
    [Google Scholar]
  21. O'Gara J. P., Humphreys H.. 2001; Staphylococcus epidermidis biofilms: importance and implications. J Med Microbiol50:582–587
    [Google Scholar]
  22. Pane-Farre J., Jonas B., Forstner K., Engelmann S., Hecker M.. 2006; The σ B regulon in Staphylococcus aureus and its regulation. Int J Med Microbiol296:237–258
    [Google Scholar]
  23. Rohde H., Burdelski C., Bartscht K., Hussain M., Buck F., Horstkotte M. A., Knobloch J. K. M., Heilmann C., Herrmann M., Mack D.. 2005; Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol55:1883–1895
    [Google Scholar]
  24. Van Wijngaerden E., Peetermans W. E., Vandersmissen J., Van Lierde S., Bobbaers H., Van Eldere J.. 1999; Foreign body infection: a new rat model for prophylaxis and treatment. J Antimicrob Chemother44:669–674
    [Google Scholar]
  25. Vandecasteele S. J., Peetermans W. E., Merckx R., Van Eldere J.. 2001; Quantification of expression of Staphylococcus epidermidis housekeeping genes with Taqman quantitative PCR during in vitro growth and under different conditions. J Bacteriol183:7094–7101
    [Google Scholar]
  26. Vandecasteele S. J., Peetermans W. E., Merckx R., Van Ranst M., Van Eldere J.. 2002; Use of gDNA as internal standard for gene expression in staphylococci in vitro and in vivo. Biochem Biophys Res Commun291:528–534
    [Google Scholar]
  27. Wise A. A., Price C. W.. 1995; Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals. J Bacteriol177:123–133
    [Google Scholar]
  28. Ziebuhr W., Heilmann C., Gotz F., Meyer P., Wilms K., Straube B., Hacker J.. 1997; Detection of the intercellular adhesion gene cluster ( ica ) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect Immun65:890–896
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015768-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015768-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error