1887

Abstract

A novel pathway of molinate mineralization promoted by a defined mixed culture composed of five bacteria (named ON1 to ON5) was proposed previously. Evidence was obtained of a metabolic association between ON4, capable of molinate breakdown, and the remaining bacteria. In the present study, the role of each isolate in that metabolic association was further explored and the possible synergistic effect of all the bacterial isolates for the stability of the mixed culture is discussed. The cleavage of the molinate thioester bond, whether occurring under aerobic or anaerobic conditions, releases ethanethiol (-ethyl moiety) and an azepane moiety derivative, identified as azepane-1-carboxylic acid. This azepane moiety is degraded, in the presence of oxygen, by strains ON1 and ON3 and ON4. Ethanethiol, which inhibits ON4, is consumed by strain ON1 and ON2. Although a two-member mixed culture of ON4 and strain ON1 was able to promote the aerobic mineralization of molinate, after 20 successive transfers of the five-member mixed culture in mineral medium with molinate, none of these isolates were lost. The results obtained indicate that the whole mixed culture may have a higher fitness than the two-member culture, even when the basic degradative and cross-protection functions are assured.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015297-0
2008-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/4/1038.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015297-0&mimeType=html&fmt=ahah

References

  1. Barreiros L., Nogales B., Manaia C. M., Ferreira A. C. S., Pieper D. H., Reis M. A., Nunes O. C. 2003; A novel pathway for mineralization of the thiocarbamate herbicide molinate by a defined bacterial mixed culture. Environ Microbiol 5:944–953
    [Google Scholar]
  2. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466
    [Google Scholar]
  3. Christensen B. B., Haagensen J. A., Heydorn A., Molin S. 2002; Metabolic commensalism and competition in a two-species microbial consortium. Appl Environ Microbiol 68:2495–2502
    [Google Scholar]
  4. Correia P., Boaventura R. A., Reis M. A., Nunes O. C. 2006; Effect of operating parameters on molinate biodegradation. Water Res 40:331–340
    [Google Scholar]
  5. De Souza M. L., Newcombe D., Alvey S., Crowley D. E., Hay A., Sadowsky M. J., Wackett L. P. 1998; Molecular basis of a bacterial consortium: interspecies catabolism of atrazine. Appl Environ Microbiol 64:178–184
    [Google Scholar]
  6. Dejonghe W., Berteloot E., Goris J., Boon N., Crul K., Maertens S., Höfte M., De Vos P., Verstraete W., Top E. M. 2003; Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax strain. Appl Environ Microbiol 69:1532–1541
    [Google Scholar]
  7. Dias B., Weimer B. 1998; Purification and characterization of l-methionine γ-lyase from Brevibacterium linens BL2. Appl Environ Microbiol 64:3327–3331
    [Google Scholar]
  8. Feigel B. J., Knackmuss H. J. 1993; Syntrophic interactions during degradation of 4-aminobenzenesulfonic acid by a two-species bacterial culture. Arch Microbiol 159:124–130
    [Google Scholar]
  9. Golovleva L. A., Finkelstein Z. I., Popovich N. A., Skriabin G. K. 1981; Transformation of ordram by microorganisms. Izv Akad Nauk SSSR Biol 3:348–358 (in Russian)
    [Google Scholar]
  10. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  11. Hay A. G., Dees P. M., Sayler G. S. 2001; Growth of a bacterial consortium on triclosan. FEMS Microbiol Ecol 36:105–112
    [Google Scholar]
  12. Henriques I. S., Alves A., Tacão M., Almeida A., Cunha A., Correia A. 2006; Seasonal and spatial variability of free-living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal. Estuar Coast Shelf Sci 68:139–148
    [Google Scholar]
  13. Imai Y., Kuwatsuka S. 1986; Metabolic pathways of the herbicide molinate in four strains of isolated soil microorganisms. J Pestic Sci 11:245–251
    [Google Scholar]
  14. Kato S., Haruta S., Cui Z. J., Ishii M., Igarashi Y. 2005; Stable coexistence of five bacterial strains as a cellulose-degrading community. Appl Environ Microbiol 71:7099–7106
    [Google Scholar]
  15. Manaia C. M., Nogales B., Weiss N., Nunes O. C. 2004; Gulosibacter molinativorax gen. nov., sp. nov., a molinate degrading bacterium, and classification of ‘ Brevibacterium helvolum’ DSM 20419 as Pseudoclavibacter helvolus gen. nov., sp. nov. Int J Syst Evol Microbiol 54:783–789
    [Google Scholar]
  16. McClung G., Dick W. A., Karns J. 1994; EPTC degradation by isolated soil microorganisms. J Agric Food Chem 42:2926–2931
    [Google Scholar]
  17. Muyzer G., de Waal E. C., Uitterlinden A. G. 1993; Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700
    [Google Scholar]
  18. Nojiri H., Shintani M., Omori T. 2004; Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Appl Microbiol Biotechnol 64:154–174
    [Google Scholar]
  19. Pelz O., Tesar M., Wittich R. M., Moore E. R. B., Timmis K. N., Abraham W. R. 1999; Towards elucidation of microbial community metabolic pathways: unravelling the network of carbon sharing in a pollutant-degrading bacterial consortium by immunocapture and isotopic ratio mass spectrometry. Environ Microbiol 1:167–174
    [Google Scholar]
  20. Pieper D. H., Martins dos Santos V. A. P., Golyshin P. N. 2004; Genomic and mechanistic insights into the biodegradation of organic pollutants. Curr Opin Biotechnol 15:215–224
    [Google Scholar]
  21. Soderquist C. J., Bowers J. B., Crosby D. G. 1977; Dissipation of molinate in a rice field. J Agric Food Chem 25:940–945
    [Google Scholar]
  22. Sorensen S. R., Ronen Z., Aamand J. 2002; Growth in coculture stimulates metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2. Appl Environ Microbiol 68:3478–3485
    [Google Scholar]
  23. Thomas V. M., Holt C. L. 1980; The degradation of [14C]molinate in soil under flooded and nonflooded conditions. J Environ Sci Health B 15:475–484
    [Google Scholar]
  24. Timmis K. N., Pieper D. H. 1999; Bacteria designed for bioremediation. Trends Biotechnol 17:200–204
    [Google Scholar]
  25. Top E. M., Springael D., Boon N. 2002; Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiol Ecol 42:199–208
    [Google Scholar]
  26. Tsuda M., Tan H. M., Nishi A., Furukawa K. 1999; Mobile catabolic genes in bacteria. J Biosci Bioeng 87:401–410
    [Google Scholar]
  27. Wackett L. P., Hershberger C. D. 2001; Metabolic Logic and Pathway maps. In Biocatalysis and Biodegradation: Microbial Transformation of Organic Compounds pp 135–155 Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015297-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015297-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error