host specificity: comparative genomics of human versus animal isolates by multi-strain microarray Free

Abstract

is a commensal and pathogen of several mammalian species, particularly humans and cattle. We aimed to (i) identify genes associated with host specificity, (ii) determine the relatedness of human and animal isolates, and (iii) identify whether human and animal isolates typically exchanged mobile genetic elements encoding virulence and resistance genes. Using a well-validated seven-strain microarray, we compared 56 UK isolates that caused infection in cows, horses, goats, sheep and a camel with 161 human isolates from healthy carriers and community acquired infections in the UK. We had previously shown that human isolates are clustered into ten dominant and a few minor lineages, each with unique combinations of surface proteins predicted to bind to human proteins. We found that the animal-associated clustered into ten lineages, with 61 % assigned to four lineages, ST151, ST771, ST130 and ST873, that were unique to animals. The majority of bovine mastitis was caused by isolates of lineage ST151, ST771 and ST97, but a few human lineages also caused mastitis. isolated from horses were more likely to cluster into human-associated lineages, with 54 % of horse-associated assigned to the human clusters CC1, CC8 and CC22; along with the presence of some multi-drug resistant strains, this suggests a human origin. This is the most comprehensive genetic comparison of human versus animal isolates conducted, and because we used a whole-genome approach we could estimate the key genes with the greatest variability that are associated with host specificity. Several genes conserved in all human isolates were variable or missing in one or more animal lineages, including the well-characterized lineage specific genes and . Interestingly, genes carried on mobile genetic elements (MGEs) such as , and were less common in animal isolates, and was not found. There was a lot of MGE variation within lineages, and some evidence that exchange of MGEs such as bacteriophage and pathogenicity islands between animal and human lineages is feasible, but there was less evidence of antibiotic resistance gene transfer on the staphylococcal cassette chromosomes (SCC) or plasmids. Surprisingly, animal lineages are closely related to human lineages and only a handful of genes or gene combinations may be responsible for host specificity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015289-0
2008-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/7/1949.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015289-0&mimeType=html&fmt=ahah

References

  1. Ayliffe G. A. 1997; The progressive intercontinental spread of methicillin-resistant Staphylococcus aureus. Clin Infect Dis 24:Suppl 1S74–S79
    [Google Scholar]
  2. Becker K., von Eiff C., Keller B., Bruck M., Etienne J., Peters G. 2005; Thermonuclease gene as a target for specific identification of Staphylococcus intermedius isolates: use of a PCR–DNA enzyme immunoassay. Diagn Microbiol Infect Dis 51:237–244
    [Google Scholar]
  3. Dufour P., Gillet Y., Bes M., Lina G., Vandenesch F., Floret D., Etienne J., Richet H. 2002; Community-acquired methicillin-resistant Staphylococcus aureus infections in France: emergence of a single clone that produces Panton-Valentine leukocidin. Clin Infect Dis 35:819–824
    [Google Scholar]
  4. Enright M. C., Day N. P., Davies C. E., Peacock S. J., Spratt B. G. 2000; Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38:1008–1015
    [Google Scholar]
  5. Feil E. J., Cooper J. E., Grundmann H., Robinson D. A., Enright M. C., Berendt T., Peacock S. J., Smith J. M., Murphy M. & other authors; 2003; How clonal is Staphylococcus aureus?. J Bacteriol 185:3307–3316
    [Google Scholar]
  6. Feil E. J., Li B. C., Aanensen D. M., Hanage W. P., Spratt B. G. 2004; eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186:1518–1530
    [Google Scholar]
  7. Fitzgerald J. R., Meaney W. J., Hartigan P. J., Smyth C. J., Kapur V. 1997; Fine-structure molecular epidemiological analysis of Staphylococcus aureus recovered from cows. Epidemiol Infect 119:261–269
    [Google Scholar]
  8. Gopal Rao G., Michalczyk P., Nayeem N., Walker G., Wigmore L. 2007; Prevalence and risk factors for meticillin-resistant Staphylococcus aureus in adult emergency admissions – a case for screening all patients?. J Hosp Infect 66:15–21
    [Google Scholar]
  9. Gould I. M. 2005; The clinical significance of methicillin-resistant Staphylococcus aureus. J Hosp Infect 61:277–282
    [Google Scholar]
  10. Herron-Olson L., Fitzgerald J. R., Musser J. M., Kapur V. 2007; Molecular correlates of host specialization in Staphylococcus aureus. PLoS ONE 2:e1120
    [Google Scholar]
  11. Huijsdens X. W., van Dijke B. J., Spalburg E., van Santen-Verheuvel M. G., Heck M. E., Pluister G. N., Voss A., Wannet W. J., de Neeling A. J. 2006; Community-acquired MRSA and pig-farming. Ann Clin Microbiol Antimicrob 5:26
    [Google Scholar]
  12. Jørgensen H. J., Mørk T., Caugant D. A., Kearns A., Rørvik L. M. 2005; Genetic variation among Staphylococcus aureus strains from Norwegian bulk milk. Appl Environ Microbiol 71:8352–8361
    [Google Scholar]
  13. Juhász-Kaszanyitzky E., Jánosi S., Somogyi P., Dán A., van der Graaf-van Bloois L., van Duijkeren E., Wagenaar J. A. 2007; MRSA transmission between cows and humans. Emerg Infect Dis 13:630–632
    [Google Scholar]
  14. Kapur V., Sischo W. M., Greer R. S., Whittam T. S., Musser J. M. 1995; Molecular population genetic analysis of Staphylococcus aureus recovered from cows. J Clin Microbiol 33:376–380
    [Google Scholar]
  15. Kluytmans J., van Belkum A., Verbrugh H. 1997; Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 10:505–520
    [Google Scholar]
  16. Komatsuzawa H., Ohta K., Sugai M., Fujiwara T., Glanzmann P., Berger-Bachi B., Suginaka H. 2000; Tn 551-mediated insertional inactivation of the fmtB gene encoding a cell wall-associated protein abolishes methicillin resistance in Staphylococcus aureus. J Antimicrob Chemother 45:421–431
    [Google Scholar]
  17. Kumagai R., Nakatani K., Ikeya N., Kito Y., Kaidoh T., Takeuchi S. 2007; Quadruple or quintuple conversion of hlb,sak, sea (or sep), scn, and chp genes by bacteriophages in non- β-hemolysin-producing bovine isolates of Staphylococcus aureus. Vet Microbiol 122:190–195
    [Google Scholar]
  18. Lindsay J. A., Holden M. T. 2006; Understanding the rise of the superbug: investigation of the evolution and genomic variation of Staphylococcus aureus. Funct Integr Genomics 6:186–201
    [Google Scholar]
  19. Lindsay J. A., Ruzin A., Ross H. F., Kurepina N., Novick R. P. 1998; The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol Microbiol 29:527–543
    [Google Scholar]
  20. Lindsay J. A., Moore C. E., Day N. P., Peacock S. J., Witney A. A., Stabler R. A., Husain S. E., Butcher P. D., Hinds J. 2006; Microarrays reveal that each of the ten dominant lineages of Staphylococcus aureus has a unique combination of surface-associated and regulatory genes. J Bacteriol 188:669–676
    [Google Scholar]
  21. Loeffler A., Boag A. K., Sung J., Lindsay J. A., Guardabassi L., Dalsgaard A., Smith H., Stevens K. B., Lloyd D. H. 2005; Prevalence of methicillin-resistant Staphylococcus aureus among staff and pets in a small animal referral hospital in the UK. J Antimicrob Chemother 56:692–697
    [Google Scholar]
  22. Monecke S., Kuhnert P., Hotzel H., Slickers P., Ehricht R. 2007; Microarray based study on virulence-associated genes and resistance determinants of Staphylococcus aureus isolates from cattle. Vet Microbiol 125:128–140
    [Google Scholar]
  23. Peacock S. J., Moore C. E., Justice A., Kantzanou M., Story L., Mackie K., O'Neill G., Day N. P. 2002; Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect Immun 70:4987–4996
    [Google Scholar]
  24. Rooijakkers S. H., Ruyken M., Roos A., Daha M. R., Presanis J. S., Sim R. B., van Wamel W. J., van Kessel K. P., van Strijp J. A. 2005; Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat Immunol 6:920–927
    [Google Scholar]
  25. Sears P. M., McCarthy K. K. 2003; Management and treatment of staphylococcal mastitis. Vet Clin North Am Food Anim Pract 19:171–185
    [Google Scholar]
  26. Smith E. M., Green L. E., Medley G. F., Bird H. E., Fox L. K., Schukken Y. H., Kruze J. V., Bradley A. J., Zadoks R. N., Dowson C. G. 2005; Multilocus sequence typing of intercontinental bovine Staphylococcus aureus isolates. J Clin Microbiol 43:4737–4743
    [Google Scholar]
  27. Sung J. M.-L., Lindsay J. A. 2007; Staphylococcus aureus that are hyper-susceptible to resistance gene transfer from enterococci. Antimicrob Agents Chemother 51:2189–2191
    [Google Scholar]
  28. Tormo M. A., Knecht E., Götz F., Lasa I., Penadés J. R. 2005; Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer?. Microbiology 151:2465–2475
    [Google Scholar]
  29. van Wamel W. J., Rooijakkers S. H., Ruyken M., van Kessel K. P., van Strijp J. A. 2006; The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on β-hemolysin-converting bacteriophages. J Bacteriol 188:1310–1315
    [Google Scholar]
  30. Vautor E., Abadie G., Pont A., Thiery R. 2008; Evaluation of the presence of the bap gene in Staphylococcus aureus isolates recovered from human and animals species. Vet Microbiol 127:407–411
    [Google Scholar]
  31. Waldron D. E., Lindsay J. A. 2006; Sau1: a novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages. J Bacteriol 188:5578–5585
    [Google Scholar]
  32. Weese J. S., Archambault M., Willey B. M., Hearn P., Kreiswirth B. N., Said-Salim B., McGeer A., Likhoshvay Y., Prescott J. F., Low D. E. 2005; Methicillin-resistant Staphylococcus aureus in horses and horse personnel, 2000–2002. Emerg Infect Dis 11:430–435
    [Google Scholar]
  33. Witney A. A., Marsden G. L., Holden M. T., Stabler R. A., Husain S. E., Vass J. K., Butcher P. D., Hinds J., Lindsay J. A. 2005; Design, validation, and application of a seven-strain Staphylococcus aureus PCR product microarray for comparative genomics. Appl Environ Microbiol 71:7504–7514
    [Google Scholar]
  34. Witte W. 2000; Selective pressure by antibiotic use in livestock. Int J Antimicrob Agents 16:Suppl 1S19–S24
    [Google Scholar]
  35. Zadoks R., van Leeuwen W., Barkema H., Sampimon O., Verbrugh H., Schukken Y. H., van Belkum A. 2000; Application of pulsed-field gel electrophoresis and binary typing as tools in veterinary clinical microbiology and molecular epidemiologic analysis of bovine and human Staphylococcus aureus isolates. J Clin Microbiol 38:1931–1939
    [Google Scholar]
  36. Zadoks R. N., van Leeuwen W. B., Kreft D., Fox L. K., Barkema H. W., Schukken Y. H., van Belkum A. 2002; Comparison of Staphylococcus aureus isolates from bovine and human skin, milking equipment, and bovine milk by phage typing, pulsed-field gel electrophoresis, and binary typing. J Clin Microbiol 40:3894–3902
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015289-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015289-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed