Protein HGFI from the edible mushroom is a novel 8 kDa class I hydrophobin that forms rodlets in compressed monolayers Free

Abstract

Hydrophobins are a group of low-molecular-mass, cysteine-rich proteins that have unusual biophysical properties. They are highly surface-active and can self-assemble at hydrophobic–hydrophilic interfaces, forming surface layers that are able to reverse the hydropathy of surfaces. Here we describe a novel hydrophobin from the edible mushroom , which was named HGFI and belongs to class I. The hydrophobin gene was identified during sequencing of random clones from a cDNA library, and the corresponding protein was isolated as a hot SDS-insoluble aggregate from the cell wall. The purified HGFI was found to have 83 amino acids. The protein sequence deduced from the cDNA sequence had 107 amino acids, from which a 24 aa signal sequence had been cleaved off in the mature protein. This signal sequence was 5 aa longer than had been predicted on the basis of signal peptide analysis of the cDNA. Rodlet mosaic structures were imaged using atomic force microscopy (AFM) on mica surfaces after drying-down HGFI solutions. Using Langmuir films we were also able to take images of both the hydrophobic and hydrophilic sides of films formed at the air–water interface. No distinct structure was observed in films compressed once, but in films compressed several times rodlet structures could be seen. Most rodlets were aligned in the same direction, indicating that formation of rodlets may be promoted during compression of the monolayer.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015263-0
2008-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/6/1677.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015263-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  2. Asgeirsdóttir S. A., de Vries O. M. H., Wessels J. G. H. 1998; Identification of three differentially expressed hydrophobins in Pleurotus ostreatus (oyster mushroom. Microbiology 144:2961–2969
    [Google Scholar]
  3. Askolin S., Nakari-Setälä T., Tenkanen M. 2001; Overproduction, purification, and characterization of the Trichoderma reesei hydrophobin HFBI. Appl Microbiol Biotechnol 57:124–130
    [Google Scholar]
  4. Askolin S., Linder M., Scholtmeijer K., Tenkanen M., Penttilä M., de Vocht M. L., Wösten H. A. B. 2006; Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reesei . Biomacromolecules 7:1295–1301
    [Google Scholar]
  5. Bailey M. J., Askolin S., Horhammer N., Tenkanen M., Linder M., Penttilä M., Nakari-Setälä T. 2002; Process technological effects of deletion and amplification of hydrophobins I and II in transformants of Trichoderma reesei . Appl Microbiol Biotechnol 58:721–727
    [Google Scholar]
  6. Carpenter C. E., Mueller R. J., Kazmierczak P., Zhang L., Villalon D. K., Van Alfen N. K. 1992; Effect of a virus on accumulation of a tissue-specific cell-surface protein of the fungus Cryphonectria ( Endothia ) parasitica . Mol Plant Microbe Interact 5:55–61
    [Google Scholar]
  7. Cui F. J., Tao W. Y., Xu Z. H., Guo W. J., Xu H. Y., Ao Z. H., Jin J., Wei Y. Q. 2007; Structural analysis of anti-tumor heteropolysaccharide GFPS1b from the cultured mycelia of Grifola frondosa GF9801. Bioresour Technol 98:395–401
    [Google Scholar]
  8. de Vocht M. L., Scholtmeijer K., van der Vegte E. W., de Vries O. M. H., Sonveaux N., Wösten H. A. B., Ruysschaert J.-M., Hadziioannou G., Wessels J. G. H., Robillard G. T. 1998; Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces. Biophys J 74:2059–2068
    [Google Scholar]
  9. De Vries O. M. H., Fekkes M. P., Wösten H. A. B., Wessels J. G. H. 1993; Insoluble hydrophobin complexes in the walls of Schizophyllum commune and other filamentous fungi. Arch Microbiol 159:330–335
    [Google Scholar]
  10. Dons J. J. M., de Vries O. M. H., Wessels J. G. H. 1979; Characterisation of the genome of the basidiomycete Schizophyllum commune . Biochim Biophys Acta 563:100–112
    [Google Scholar]
  11. Hakanpää J., Szilvay G. R., Kaljunen H., Maksimainen M., Linder M. B., Rouvinen J. 2006; Two crystal structures of Trichoderma reesei hydrophobin HFBI – the structure of a protein amphiphile with and without detergent interaction. Protein Sci 15:2129–2140
    [Google Scholar]
  12. Lesse A. J., Campagnari A. A., Bittner W. E., Apicella M. A. 1990; Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Immunol Methods 126:109–117
    [Google Scholar]
  13. Linder M. B., Selber K., Nakari-Setälä T., Qiao M., Kula M. R., Penttilä M. 2001; The hydrophobins HFBI and HFBII from Trichoderma reesei showing efficient interactions with nonionic surfactants in aqueous two-phase systems. Biomacromolecules 2:511–517
    [Google Scholar]
  14. Linder M. B., Szilvay G. R., Nakari-Setälä T., Penttilä M. E. 2005; Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896
    [Google Scholar]
  15. Lumsdon S. O., Green J., Stieglitz B. 2005; Adsorption of hydrophobin proteins at hydrophobic and hydrophilic interfaces. Colloids Surf B Biointerfaces 44:172–178
    [Google Scholar]
  16. Mackay J. P., Matthews J. M., Winefield R. D., Mackay L. G., Haverkamp R. G., Templeton M. D. 2001; The hydrophobin EAS is largely unstructured in solution and functions by forming amyloid-like structures. Structure 9:83–91
    [Google Scholar]
  17. Nanba H. 1993; Antitumor activity of orally administered D-fraction from maitake mushroom ( Grifola frondosa . J Naturopath Med 1:10–15
    [Google Scholar]
  18. Nielsen H., Engelbrecht J., Brunak S., von Heijn G. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6
    [Google Scholar]
  19. Paananen A., Vuorimaa E., Torkkeli M., Penttila M., Kauranen M., Ikkala O., Lemmetyinen H., Serimaa R., Linder M. B. 2003; Structural hierarchy in molecular films of two class II hydrophobins. Biochemistry 42:5253–5258
    [Google Scholar]
  20. Schäffer A. A., Aravind L., Madden T. L., Shavirin S., Spouge J. L., Wolf Y. I., Koonin E. V., Altschul S. F. 2001; Improving the accuracy of psi-blast protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005
    [Google Scholar]
  21. Schägger H., von Jagow G. 1987; Tricine-sodium dodecylsulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379
    [Google Scholar]
  22. Schuren F. H., Wessels J. G. H. 1990; Two genes specifically expressed in fruiting dikaryons of Schizophyllum commune : homologies with a gene not regulated by mating-type genes. Gene 90:199–205
    [Google Scholar]
  23. Shen Q., Geiser D. M., Royse D. J. 2002; Molecular phylogenetic analysis of Grifola frondosa (maitake) reveals a species partition separating eastern North American and Asian isolates. Mycologia 94:472–482
    [Google Scholar]
  24. Stringer M. A., Dean R. A., Sewall T. C., Timberlake W. E. 1991; Rodletless, a new developmental mutant induced by directed gene inactivation. Genes Dev 5:1161–1171
    [Google Scholar]
  25. Szilvay G. R., Paananen A., Laurikainen K., Vuorimaa E., Lemmetyinen H., Peltonen J., Linder M. B. 2007; Self-assembled hydrophobin protein films at the air–water interface: structural analysis and molecular engineering. Biochemistry 46:2345–2354
    [Google Scholar]
  26. Talbot N. J. 1997; Growing into the air. Curr Biol7R78–R81
    [Google Scholar]
  27. Templeton M. D., Greenwood D. R., Beever R. E. 1995; Solubilization of Neurospora crassa rodlet proteins and identification of the predominant protein as the proteolytically processed eas ( ccg-2 ) gene product. Exp Mycol 19:166–169
    [Google Scholar]
  28. Wang X., Graveland-Bikker J. F., De Kruif C. G., Robillard G. T. 2004; Oligomerization of hydrophobin SC3 in solution: from soluble state to self-assembly. Protein Sci 13:810–821
    [Google Scholar]
  29. Wessels J. G. H. 1994; Developmental regulation of fungal cell wall information. Annu Rev Phytopathol 32:413–437
    [Google Scholar]
  30. Wessels J. G. H. 1997; Hydrophobins: proteins that change the nature of the fungal surface. Adv Microb Physiol 38:1–45
    [Google Scholar]
  31. Wösten H. A. B. 2001; Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646
    [Google Scholar]
  32. Wösten H. A. B., de Vocht M. L. 2000; Hydrophobins, the fungal coat unravelled. Biochim Biophys Acta 146979–86
    [Google Scholar]
  33. Wösten H. A. B., Wessels J. G. H. 1997; Hydrophobins, from molecular structure to multiple functions in fungal development. Mycoscience 38:363–374
    [Google Scholar]
  34. Wösten H. A. B., van Wetter M. A., Lugones L. G., van der Mei H. C., Busscher H. J., Wessels J. G. H. 1999; How a fungus escapes the water to grow into the air. Curr Biol 9:85–88
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015263-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015263-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed