The host adherens junction molecule nectin-1 is downregulated in -infected genital epithelial cells Free

Abstract

Nectin-1, a member of the immunoglobulin superfamily, is a Ca-independent cell adhesion protein implicated in the organization of E-cadherin-based adherens junctions (AJs) and claudin-based tight junctions (TJs) in epithelial cells. Nectin-1 also regulates cell–cell adhesion and cell polarization in a Cdc42- and Rac-dependent manner. Western blot analyses demonstrated that accumulation of host nectin-1 is decreased by 85 % at 48 hours post-infection (h.p.i.) in serovar E-infected HeLa cells. Time-course experiments demonstrated that this decrease was sustained to 60 h.p.i. Nectin-1 downregulation in -infected cells was prevented by both chloramphenicol exposure and prior inactivation of the chlamydiae with UV light, demonstrating that active replication was required. Penicillin G-exposure studies demonstrated that nectin-1 accumulation was also altered during persistent infection. Finally, RT-PCR analyses indicated that chlamydial infection did not alter accumulation of any nectin-1 transcripts, demonstrating that nectin-1 accumulation is reduced at a post-transcriptional level. Intesrestingly, N-cadherin-dependent cell–cell junctions can be disrupted by infection, as reported by Prozialeck (2002) . Because interaction of nectin molecules on adjacent cells is essential for AJ formation, these data suggest that may disrupt AJs, at least in part, by diminishing nectin-1 accumulation. Notably, release of chlamydiae-infected epithelial cells has been observed both from polarized monolayers and from tissues, suggesting that chlamydia-modulated downregulation of adhesion molecules and the subsequent disruption of host cell adherence may be involved in chlamydial dissemination or pathogenesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015164-0
2008-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/5/1290.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015164-0&mimeType=html&fmt=ahah

References

  1. Arno J. N., Ricker V. A., Batteiger B. E., Katz B. P., Caine V. A., Jones R. B. 1990; Interferon-gamma in endocervical secretions of women infected with Chlamydia trachomatis . J Infect Dis 162:1385–1389
    [Google Scholar]
  2. Balsara Z. R., Misaghi S., Lafave J. N., Starnbach M. N. 2006; Chlamydia trachomatis infection induces cleavage of the mitotic cyclin B1. Infect Immun 74:5602–5608
    [Google Scholar]
  3. Braga V. M., Machesky L. M., Hall A., Hotchin N. A. 1997; The small GTPases Rho and Rac are required for the establishment of cadherin-dependent cell–cell contacts. J Cell Biol 137:1421–1431
    [Google Scholar]
  4. Braga V. M., Del Maschio A., Machesky L., Dejana E. 1999; Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context. Mol Biol Cell 10:9–22
    [Google Scholar]
  5. Darville T. 2000; Chlamydia spp. In Persistent Bacterial Infections pp 229–261 Edited by Nataro J. P., Blazer M. J., Cunningham-Rundles S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Dean D., Powers V. C. 2001; Persistent Chlamydia trachomatis infections resist apoptotic stimuli. Infect Immun 69:2442–2447
    [Google Scholar]
  7. Deka S., Vanover J., Dessus-Babus S., Whittimore J., Howett M. K., Wyrick P. B., Schoborg R. V. 2006; Chlamydia trachomatis enters a viable but non-cultivable (persistent) state within herpes simplex virus type 2 (HSV-2) co-infected host cells. Cell Microbiol 8:149–162
    [Google Scholar]
  8. Deka S., Vanover J., Sun J., Kintner J., Whittimore J., Schoborg R. V. 2007; An early event in the herpes simplex virus type-2 replication cycle is sufficient to induce Chlamydia trachomatis persistence. Cell Microbiol 9:725–737
    [Google Scholar]
  9. Dong F., Su H., Huang Y., Zhong Y., Zhong G. 2004; Cleavage of host keratin 8 by a chlamydia-secreted protease. Infect Immun 72:3863–3868
    [Google Scholar]
  10. Dong F., Pirbhai M., Xiao Y., Zhong Y., Wu Y., Zhong G. 2005; Degradation of the proapoptotic proteins Bik, Puma, and Bim with Bcl-2 domain 3 homology in Chlamydia trachomatis -infected cells. Infect Immun 73:1861–1864
    [Google Scholar]
  11. Doughri A. M., Storz J., Altera K. P. 1972; Mode of entry and release of chlamydiae in infections of intestinal epithelial cells. J Infect Dis 126:652–657
    [Google Scholar]
  12. Eissenberg L. G., Wyrick P. B., Davis C. H., Rumpp J. W. 1983; Chlamydia psittaci elementary body envelopes: ingestion and inhibition of phagolysosome fusion. Infect Immun 40:741–751
    [Google Scholar]
  13. Etienne-Manneville S., Hall A. 2002; Rho GTPases in cell biology. Nature 420:629–635
    [Google Scholar]
  14. Fan T., Lu H., Hu H., Shi L., McClarty G. A., Nance D. M., Greenberg A. H., Zhong G. 1998; Inhibition of apoptosis in chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J Exp Med 187:487–496
    [Google Scholar]
  15. Farquhar M. G., Palade G. E. 1963; Junctional complexes in various epithelia. J Cell Biol 17:375–412
    [Google Scholar]
  16. Fischer S. F., Vier J., Kirschnek S., Klos A., Hess S., Ying S., Hacker G. 2004; Chlamydia inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins. J Exp Med 200:905–916
    [Google Scholar]
  17. Geng Y., Shane R. B., Berencsi K., Gonczol E., Zaki M. H., Margolis D. J., Trinchieri G., Rook A. H. 2000; Chlamydia pneumoniae inhibits apoptosis in human peripheral blood mononuclear cells through induction of IL-10. J Immunol 164:5522–5529
    [Google Scholar]
  18. Gumbiner B. M. 1996; Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357
    [Google Scholar]
  19. Hackstadt T. 1999; Cell biology. In Chlamydia: Intracellular Biology, Pathogenesis, and Immunity pp 101–138 Edited by Stephens R. S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Hatch T. 1999; Developmental biology. In Chlamydia: Intracellular Biology, Pathogenesis, and Immunity pp 29–67 Edited by Stephens R. S. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Heuer D., Brinkmann V., Meyer T. F., Szczepek A. J. 2003; Expression and translocation of chlamydial protease during acute and persistent infection of the epithelial HEp-2 cells with Chlamydophila ( Chlamydia ) pneumoniae . Cell Microbiol 5:315–322
    [Google Scholar]
  22. Hogan R. J., Mathews S. A., Mukhopadhyay S., Summersgill J. T., Timms P. 2004; Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 72:1843–1855
    [Google Scholar]
  23. Honda T., Shimizu K., Kawakatsu T., Fukuhara A., Irie K., Nakamura T., Matsuda M., Takai Y. 2003; Cdc42 and Rac small G proteins activated by trans -interactions of nectins are involved in activation of c -Jun N-terminal kinase, but not in association of nectins and cadherin to form adherens junctions, in fibroblasts. Genes Cells 8:481–491
    [Google Scholar]
  24. Jepson M. A., Collares-Buzato C. B., Clark M. A., Hirst B. H., Simmons N. L. 1995; Rapid disruption of epithelial barrier function by Salmonella typhimurium is associated with structural modification of intercellular junctions. Infect Immun 63:356–359
    [Google Scholar]
  25. Johnson G. L., Lapadat R. 2002; Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912
    [Google Scholar]
  26. Kane C. D., Byrne G. I. 1998; Differential effects of gamma interferon on Chlamydia trachomatis growth in polarized and nonpolarized human epithelial cells in culture. Infect Immun 66:2349–2351
    [Google Scholar]
  27. Kawakatsu T., Shimizu K., Honda T., Fukuhara T., Hoshino T., Takai Y. 2002; Trans -interactions of nectins induce formation of filopodia and lamellipodia through the respective activation of Cdc42 and Rac small G proteins. J Biol Chem 277:50749–50755
    [Google Scholar]
  28. Lauffenburger D. A., Horwitz A. F. 1996; Cell migration: a physically integrated molecular process. Cell 84:359–369
    [Google Scholar]
  29. Lin A. 2003; Activation of the JNK signaling pathway: breaking the brake on apoptosis. Bioessays 25:17–24
    [Google Scholar]
  30. MacIntyre A., Hammond C. J., Little C. S., Appelt D. M., Balin B. J. 2002; Chlamydia pneumoniae infection alters the junctional complex proteins of human brain microvascular endothelial cells. FEMS Microbiol Lett 217:167–172
    [Google Scholar]
  31. Majeed M., Gustafsson M., Kihlstrom E., Stendahl O. 1993; Roles of Ca2+ and F-actin in intracellular aggregation of Chlamydia trachomatis in eucaryotic cells. Infect Immun 61:1406–1414
    [Google Scholar]
  32. Nelson D. E., Virok D. P., Wood H., Roshick C., Johnson R. M., Whitmire W. M., Crane D. D., Steele-Mortimer O., Kari L. other authors 2005; Chlamydial IFN- γ immune evasion is linked to host infection tropism. Proc Natl Acad Sci U S A 102:10658–10663
    [Google Scholar]
  33. Pirbhai M., Dong F., Zhong Y., Pan K. Z., Zhong G. 2006; The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis -infected cells. J Biol Chem 281:31495–31501
    [Google Scholar]
  34. Prozialeck W. C., Fay M. J., Lamar P. C., Pearson C. A., Sigar I., Ramsey K. H. 2002; Chlamydia trachomatis disrupts N-cadherin-dependent cell-cell junctions and sequesters β -catenin in human cervical epithelial cells. Infect Immun 70:2605–2613
    [Google Scholar]
  35. Rajalingam K., Al-Younes H., Muller A., Meyer T. F., Szczepek A. J., Rudel T. 2001; Epithelial cells infected with Chlamydophila pneumoniae ( Chlamydia pneumoniae ) are resistant to apoptosis. Infect Immun 69:7880–7888
    [Google Scholar]
  36. Sakaguchi T., Kohler H., Gu X., McCormick B. A., Reinecker H. C. 2002; Shigella flexneri regulates tight junction-associated proteins in human intestinal epithelial cells. Cell Microbiol 4:367–381
    [Google Scholar]
  37. Sakisaka T., Takai Y. 2004; Biology and pathology of nectins and nectin-like molecules. Curr Opin Cell Biol 16:513–521
    [Google Scholar]
  38. Sears C. L. 2000; Molecular physiology and pathophysiology of tight junctions V. Assault of the tight junction by enteric pathogens. Am J Physiol Gastrointest Liver Physiol 279:G1129–G1134
    [Google Scholar]
  39. Shaw A. C., Vandahl B. B., Larsen M. R., Roepstorff P., Gevaert K., Vandekerckhove J., Christiansen G., Birkelund S. 2002; Characterization of a secreted Chlamydia protease. Cell Microbiol 4:411–424
    [Google Scholar]
  40. Soloff B. L., Rank R. G., Barron A. L. 1985; Electron microscopic observations concerning the in vivo uptake and release of the agent of guinea-pig inclusion conjunctivitis ( Chlamydia psittaci ) in guinea-pig exocervix. J Comp Pathol 95:335–344
    [Google Scholar]
  41. Struyf F., Plate A. E., Spear P. G. 2005; Deletion of the second immunoglobulin-like domain of nectin-1 alters its intracellular processing and localization and ability to mediate entry of herpes simplex virus. J Virol 79:3841–3845
    [Google Scholar]
  42. Takai Y., Nakanishi H. 2003; Nectin and afadin: novel organizers of intercellular junctions. J Cell Sci 116:17–27
    [Google Scholar]
  43. Takai Y., Irie K., Shimizu K., Sakisaka T., Ikeda W. 2003; Nectins and nectin-like molecules: roles in cell adhesion, migration, and polarization. Cancer Sci 94:655–667
    [Google Scholar]
  44. Takaishi K., Sasaki T., Kotani H., Nishioka H., Takai Y. 1997; Regulation of cell-cell adhesion by Rac and Rho small G proteins in MDCK cells. J Cell Biol 139:1047–1059
    [Google Scholar]
  45. Takeichi M. 1995; Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 7:619–627
    [Google Scholar]
  46. Tam J. E., Knight S. T., Davis C. H., Wyrick P. B. 1992; Eukaryotic cells grown on microcarrier beads offer a cost-efficient way to propagate Chlamydia trachomatis . Biotechniques 13:374–378
    [Google Scholar]
  47. Terres A. M., Pajares J. M., O'Toole D., Ahern S., Kelleher D. 1998; H. pylori infection is associated with downregulation of E-cadherin, a molecule involved in epithelial cell adhesion and proliferation control. J Clin Pathol 51:410–412
    [Google Scholar]
  48. Tsukita S., Furuse M. 1999; Occludin and claudins in tight-junction strands: leading or supporting players?. Trends Cell Biol 9:268–273
    [Google Scholar]
  49. Van Aelst L., Symons M. 2002; Role of Rho family GTPases in epithelial morphogenesis. Genes Dev 16:1032–1054
    [Google Scholar]
  50. Wyrick P. B. 2000; Intracellular survival by Chlamydia . Cell Microbiol 2:275–282
    [Google Scholar]
  51. Wyrick P. B., Choong J., Davis C. H., Knight S. T., Royal M. O., Maslow A. S., Bagnell C. R. 1989; Entry of genital Chlamydia trachomatis into polarized human epithelial cells. Infect Immun 57:2378–2389
    [Google Scholar]
  52. Wyrick P. B., Gerbig D. G. Jr, Knight S. T., Raulston J. E. 1996; Accelerated development of genital Chlamydia trachomatis serovar E in McCoy cells grown on microcarrier beads. Microb Pathog 20:31–40
    [Google Scholar]
  53. Xia M., Bumgarner R. E., Lampe M. F., Stamm W. E. 2003; Chlamydia trachomatis infection alters host cell transcription in diverse cellular pathways. J Infect Dis 187:424–434
    [Google Scholar]
  54. Ying S., Seiffert B. M., Hacker G., Fischer S. F. 2005; Broad degradation of proapoptotic proteins with the conserved Bcl-2 homology domain 3 during infection with Chlamydia trachomatis . Infect Immun 73:1399–1403
    [Google Scholar]
  55. Zhong G., Fan T., Liu L. 1999; Chlamydia inhibits interferon γ -inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1. J Exp Med 189:1931–1938
    [Google Scholar]
  56. Zhong G., Liu L., Fan T., Fan P., Ji H. 2000; Degradation of transcription factor RFX5 during the inhibition of both constitutive and interferon γ -inducible major histocompatibility complex class I expression in chlamydia-infected cells. J Exp Med 191:1525–1534
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015164-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015164-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed