1887

Abstract

The dipeptide transport operon in bacteria comprises genes for the transport and metabolism of amino acids and dipeptides, as well as haem and haem precursors such as aminolaevulinic acid. Such nutrient and mineral sources are vital for bacteria to survive in and colonize a range of niches. analysis of the dipeptide transport systems in sequenced species identified the presence of two genes in strains that were absent in other sequenced pseudomonads. These genes encode a putative metallopeptidase, PA4498, and a putative transcriptional regulator, PA4499. Proteomic profiling of wild-type PAO1 and a mutant strain indicated that PA4499 negatively regulated the putative peptidase, PA4498. Transcriptional fusion analysis verified that expression of (, metallo-dipeptidase ) was negatively regulated by the downstream putative transcriptional regulator ( dipeptide regulator). Transcriptional fusion analysis also showed that the operon was under the negative control of . Functional genomic analysis of indicated that it is required for the metabolism of a range of dipeptides and that it contributes to the cytotoxicity of PAO1 on an epithelial cell line.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015032-0
2008-08-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/8/2209.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015032-0&mimeType=html&fmt=ahah

References

  1. Abouhamad W. N., Manson M. D. 1994; The dipeptide permease of Escherichia coli closely resembles other bacterial transport systems and shows growth-phase-dependent expression. Mol Microbiol 14:1077–1092
    [Google Scholar]
  2. Abouhamad W. N., Manson M., Gibson M. M., Higgins C. F. 1991; Peptide transport and chemotaxis in Escherichia coli and Salmonella typhimurium: characterization of the dipeptide permease (Dpp) and the dipeptide-binding protein. Mol Microbiol 5:1035–1047
    [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  4. Brown N. L., Stoyanov J. V., Kidd S. P., Hobman J. L. 2003; The MerR family of transcriptional regulators. FEMS Microbiol Rev 27:145–163
    [Google Scholar]
  5. Buell C. R., Joardar V., Lindeberg M., Selengut J., Paulsen I. T., Gwinn M. L., Dodson R. J., Deboy R. T., Durkin A. S. other authors (2003; The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 100:10181–10186
    [Google Scholar]
  6. Burrowes E., Baysse C., Adams C., O'Gara F. 2006; Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology 152:405–418
    [Google Scholar]
  7. Carter R. A., Yeoman K. H., Klein A., Hosie A. H., Sawers G., Poole P. S., Johnston A. W. 2002; dpp genes of Rhizobium leguminosarum specify uptake of δ-aminolevulinic acid. Mol Plant Microbe Interact 15:69–74
    [Google Scholar]
  8. Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., Thompson J. D. 2003; Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500
    [Google Scholar]
  9. Coffey A., van den Burg B., Veltman R., Abee T. 2000; Characteristics of the biologically active 35-kDa metalloprotease virulence factor from Listeria monocytogenes. J Appl Microbiol 88:132–141
    [Google Scholar]
  10. Corbett C. R., Burtnick M. N., Kooi C., Woods D. E., Sokol P. A. 2003; An extracellular zinc metalloprotease gene of Burkholderia cepacia. Microbiology 149:2263–2271
    [Google Scholar]
  11. Doring G., Goldstein W., Roll A., Schiotz P. O., Hoiby N., Botzenhart K. 1985; Role of Pseudomonas aeruginosa exoenzymes in lung infections of patients with cystic fibrosis. Infect Immun 49:557–562
    [Google Scholar]
  12. Feil H., Feil W. S., Chain P., Larimer F., DiBartolo G., Copeland A., Lykidis A., Trong S., Nolan M. other authors 2005; Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci U S A 102:11064–11069
    [Google Scholar]
  13. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652
    [Google Scholar]
  14. Frisk A., Schurr J. R., Wang G., Bertucci D. C., Marrero L., Hwang S. H., Hassett D. J., Schurr M. J. 2004; Transcriptome analysis of Pseudomonas aeruginosa after interaction with human airway epithelial cells. Infect Immun 72:5433–5438
    [Google Scholar]
  15. Govan J. R., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 60:539–574
    [Google Scholar]
  16. Guedon E., Serror P., Ehrlich S. D., Renault P., Delorme C. 2001; Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis . Mol Microbiol 40:1227–1239
    [Google Scholar]
  17. Hidalgo-Grass C., Mishalian I., Dan-Goor M., Belotserkovsky I., Eran Y., Nizet V., Peled A., Hanski E. 2006; A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues. EMBO J 25:4628–4637
    [Google Scholar]
  18. Holloway B. W., Morgan A. F. 1986; Genome organization in Pseudomonas . Annu Rev Microbiol 40:79–105
    [Google Scholar]
  19. Jacobs M. A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C. & other authors 2003; Comprehensive transposon mutant library of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 100:14339–14344
    [Google Scholar]
  20. Jander G., Rahme L. G., Ausubel F. M. 2000; Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182:3843–3845
    [Google Scholar]
  21. Joardar V., Lindeberg M., Jackson R. W., Selengut J., Dodson R., Brinkac L. M., Daugherty S. C., Deboy R., Durkin A. S. other authors 2005; Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol 187:6488–6498
    [Google Scholar]
  22. King N. D., O'Brian M. R. 1997; Identification of the lrp gene in Bradyrhizobium japonicum and its role in regulation of δ-aminolevulinic acid uptake. J Bacteriol 179:1828–1831
    [Google Scholar]
  23. Kooi C., Subsin B., Chen R., Pohorelic B., Sokol P. A. 2006; Burkholderia cenocepacia ZmpB is a broad-specificity zinc metalloprotease involved in virulence. Infect Immun 74:4083–4093
    [Google Scholar]
  24. Kovach M. E., Phillips R. W., Elzer P. H., Roop R. M. II, Peterson K. M. 1994; pBBR1MCS: a broad-host-range cloning vector. Biotechniques 16:800–802
    [Google Scholar]
  25. Kube D., Sontich U., Fletcher D., Davis P. B. 2001; Proinflammatory cytokine responses to P. aeruginosa infection in human airway epithelial cell lines. Am J Physiol Lung Cell Mol Physiol 280:L493–L502
    [Google Scholar]
  26. Kumagai Y., Konishi K., Gomi T., Yagishita H., Yajima A., Yoshikawa M. 2000; Enzymatic properties of dipeptidyl aminopeptidase IV produced by the periodontal pathogen Porphyromonas gingivalis and its participation in virulence. Infect Immun 68:716–724
    [Google Scholar]
  27. Letoffe S., Delepelaire P., Wandersman C. 2006; The housekeeping dipeptide permease is the Escherichia coli heme transporter and functions with two optional peptide binding proteins. Proc Natl Acad Sci U S A 103:12891–12896
    [Google Scholar]
  28. Nelson K. E., Weinel C., Paulsen I. T., Dodson R. J., Hilbert H., Martins dos Santos V. A., Fouts D. E., Gill S. R., Pop M. other authors (2002; Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808
    [Google Scholar]
  29. Nouwens A. S., Cordwell S. J., Larsen M. R., Molloy M. P., Gillings M., Willcox M. D., Walsh B. J. 2000; Complementing genomics with proteomics: the membrane subproteome of Pseudomonas aeruginosa PAO1. Electrophoresis 21:3797–3809
    [Google Scholar]
  30. O'Grady E. P., Mulcahy H., O'Callaghan J., Adams C., O'Gara F. 2006; Pseudomonas aeruginosa infection of airway epithelial cells modulates expression of Kruppel-like factors 2 and 6 via RsmA-mediated regulation of type III exoenzymes S and Y. Infect Immun 74:5893–5902
    [Google Scholar]
  31. Ochsner U. A., Wilderman P. J., Vasil A. I., Vasil M. L. 2002; GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45:1277–1287
    [Google Scholar]
  32. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448
    [Google Scholar]
  33. Rahme L. G., Stevens E. J., Wolfort S. F., Shao J., Tompkins R. G., Ausubel F. M. 1995; Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902
    [Google Scholar]
  34. Rajan S., Cacalano G., Bryan R., Ratner A. J., Sontich C. U., van Heerckeren A., Davis P., Prince A. 2000; Pseudomonas aeruginosa induction of apoptosis in respiratory epithelial cells: analysis of the effects of cystic fibrosis transmembrane conductance regulator dysfunction and bacterial virulence factors. Am J Respir Cell Mol Biol 23:304–312
    [Google Scholar]
  35. Salunkhe P., Smart C. H., Morgan J. A., Panagea S., Walshaw M. J., Hart C. A., Geffers R., Tummler B., Winstanley C. 2005; A cystic fibrosis epidemic strain of Pseudomonas aeruginosa displays enhanced virulence and antimicrobial resistance. J Bacteriol 187:4908–4920
    [Google Scholar]
  36. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Schafer A., Tauch A., Jager W., Kalinowski J., Thierbach G., Puhler A. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene 145:69–73
    [Google Scholar]
  38. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P. 2003; Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079
    [Google Scholar]
  39. Silo-Suh L., Suh S. J., Sokol P. A., Ohman D. E. 2002; A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis. Proc Natl Acad Sci U S A 99:15699–15704
    [Google Scholar]
  40. Slack F. J., Serror P., Joyce E., Sonenshein A. L. 1995; A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Mol Microbiol 15:689–702
    [Google Scholar]
  41. Song T., Toma C., Nakasone N., Iwanaga M. 2004; Aerolysin is activated by metalloprotease in Aeromonas veronii biovar sobria. J Med Microbiol 53:477–482
    [Google Scholar]
  42. Spaink H. P., Okker R. J. H. O., Wijffelman C. A., Pees E., Lugtenberg B. J. J. 1987; Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1J1. Plant Mol Biol 9:27–39
    [Google Scholar]
  43. Spratt D. A., Greenman J., Schaffer A. G. 1995; Capnocytophaga gingivalis aminopeptidase: a potential virulence factor. Microbiology 141:3087–3093
    [Google Scholar]
  44. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J. other authors (2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964
    [Google Scholar]
  45. Tamber S., Hancock R. E. 2006; Involvement of two related porins, OprD and OpdP, in the uptake of arginine by Pseudomonas aeruginosa . FEMS Microbiol Lett 260:23–29
    [Google Scholar]
  46. Tamber S., Ochs M. M., Hancock R. E. 2006; Role of the novel OprD family of porins in nutrient uptake in Pseudomonas aeruginosa . J Bacteriol 188:45–54
    [Google Scholar]
  47. Urbanowski M. L., Stauffer L. T., Stauffer G. V. 2000; The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli . Mol Microbiol 37:856–868
    [Google Scholar]
  48. Vodovar N., Vallenet D., Cruveiller S., Rouy Z., Barbe V., Acosta C., Cattolico L., Jubin C., Lajus A. other authors (2006; Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila . Nat Biotechnol 24:673–679
    [Google Scholar]
  49. Walker T. S., Bais H. P., Deziel E., Schweizer H. P., Rahme L. G., Fall R., Vivanco J. M. 2004; Pseudomonas aeruginosa–plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 134:320–331
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015032-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015032-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error