1887

Abstract

The hemibiotrophic ascomycete causes anthracnose disease on brassica crops and the model plant . Melanized appressoria pierce the host cuticle and cell wall to form specialized biotrophic hyphae inside living epidermal cells. To identify proteins secreted by appressoria that may function as virulence effectors, a cDNA library was prepared from mature appressoria formed . Bidirectional sequencing of 980 clones generated 1442 high-quality expressed sequence tags (ESTs), comprising 518 unique sequences. analysis showed that 353 (68 %) of these had significant similarity to entries in the NCBI non-redundant protein database, of which 49 were also homologous to experimentally verified fungal pathogenicity genes. ORFs were predicted from the unique sequences and screened for potential signal peptides using SignalP. Fifty-three unique sequences (10 %) were predicted to encode proteins entering the secretory pathway, of which 26 were likely to be soluble secreted proteins. For a selected subset of these, RT-PCR showed that seven genes that encode secreted proteins of unknown function, including two -specific genes, are upregulated in appressoria and expressed early during plant infection, and therefore represent candidate effectors.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/014944-0
2008-04-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/4/1204.html?itemId=/content/journal/micro/10.1099/mic.0.2007/014944-0&mimeType=html&fmt=ahah

References

  1. Ahn, I. P., Uhm, K. H., Kim, S. & Lee, Y. H. ( 2003; ). Signaling pathways involved in preinfection development of Colletotrichum gloeosporioides, C. coccodes, and C. dematium pathogenic on red pepper. Physiol Mol Plant Pathol 63, 281–289.[CrossRef]
    [Google Scholar]
  2. Ahn, N., Kim, S., Choi, W., Im, K. H. & Lee, Y. H. ( 2004; ). Extracellular matrix protein gene, EMP1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe grisea. Mol Cells 17, 166–173.
    [Google Scholar]
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  4. Bailey, J. A. & Jeger, M. J. ( 1992; ). Colletotrichum: Biology, Pathology and Control. Wallingford, UK: CAB International
  5. Baladron, V., Ufano, S., Duenas, E., Martin-Cuadrado, A. B., del Rey, F. & de Aldana, C. R. V. ( 2002; ). Eng1p, an endo-1,3-β-glucanase localized at the daughter side of the septum, is involved in cell separation in Saccharomyces cerevisiae. Eukaryot Cell 1, 774–786.[CrossRef]
    [Google Scholar]
  6. Baldwin, T. K., Winnenburg, R., Urban, M., Rawlings, C., Koehler, J. & Hammond-Kosack, K. E. ( 2006; ). The pathogen–host interactions database (PHI-base) provides insights into generic and novel themes of pathogenicity. Mol Plant Microbe Interact 19, 1451–1462.[CrossRef]
    [Google Scholar]
  7. Belozerskaya, T. A. & Gessler, N. N. ( 2007; ). Reactive oxygen species and the strategy of antioxidant defense in fungi: a review. Appl Biochem Microbiol 43, 506–515.[CrossRef]
    [Google Scholar]
  8. Caracuel-Rios, Z. & Talbot, N. J. ( 2007; ). Cellular differentiation and host invasion by the rice blast fungus Magnaporthe grisea. Curr Opin Microbiol 10, 339–345.[CrossRef]
    [Google Scholar]
  9. Catanzariti, A. M., Dodds, P. N., Lawrence, G. J., Ayliffe, M. A. & Ellis, J. G. ( 2006; ). Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors. Plant Cell 18, 243–256.[CrossRef]
    [Google Scholar]
  10. Damveld, R. A., Arentshorst, M., VanKuyk, P. A., Klis, F. M., van den Hondel, C. & Ram, A. F. J. ( 2005; ). Characterisation of CwpA, a putative glycosylphosphatidylinositol-anchored cell wall mannoprotein in the filamentous fungus Aspergillus niger. Fungal Genet Biol 42, 873–885.[CrossRef]
    [Google Scholar]
  11. De Groot, P. W. J., Ram, A. F. & Klis, F. M. ( 2005; ). Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42, 657–675.[CrossRef]
    [Google Scholar]
  12. Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K., Orbach, M. J., Thon, M., Kulkarni, R., Xu, J. R. & other authors ( 2005; ). The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980–986.[CrossRef]
    [Google Scholar]
  13. DeZwaan, T. M., Carroll, A. M., Valent, B. & Sweigard, J. A. ( 1999; ). Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell 11, 2013–2030.[CrossRef]
    [Google Scholar]
  14. Eisenhaber, B., Schneider, G., Wildpaner, M. & Eisenhaber, F. ( 2004; ). A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans, Candida albicans, Neurospora crassa, Saccharomyces cerevisiae and Schizosaccharomyces pombe. J Mol Biol 337, 243–253.[CrossRef]
    [Google Scholar]
  15. El Gueddari, N. E., Rauchhaus, U., Moerschbacher, B. M. & Deising, H. B. ( 2002; ). Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi. New Phytol 156, 103–112.[CrossRef]
    [Google Scholar]
  16. Emanuelsson, O., Brunak, S., von Heijne, G. & Nielsen, H. ( 2007; ). Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2, 953–971.[CrossRef]
    [Google Scholar]
  17. Ewing, B., Hillier, L., Wendl, M. C. & Green, P. ( 1998; ). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8, 175–185.[CrossRef]
    [Google Scholar]
  18. Green, J. R., Pain, N. A., Cannell, M. E., Jones, G. L., Leckie, C. P., McCready, S., Mendgen, K., Mitchell, A. J., Callow, J. A. & O'Connell, R. J. ( 1995; ). Analysis of differentiation and development of the specialized infection structures formed by biotrophic fungal pathogens using monoclonal antibodies. Can J Bot 73, S1, 408–417.
    [Google Scholar]
  19. Hahn, M. & Mendgen, K. ( 1997; ). Characterization of in planta induced rust genes isolated from a haustorium-specific cDNA library. Mol Plant Microbe Interact 10, 427–437.[CrossRef]
    [Google Scholar]
  20. Houterman, P. M., Speijer, D., Dekker, H. L., de Koster, C. G., Cornelissen, B. J. C. & Rep, M. ( 2007; ). The mixed xylem sap proteome of Fusarium oxysporum-infected tomato plants. Mol Plant Pathol 8, 215–221.[CrossRef]
    [Google Scholar]
  21. Huang, X. Q. & Madan, A. ( 1999; ). CAP3: a DNA sequence assembly program. Genome Res 9, 868–877.[CrossRef]
    [Google Scholar]
  22. Hube, B., Sanglard, D., Odds, F. C., Hess, D., Monod, M., Schafer, W., Brown, A. J. & Gow, N. A. ( 1997; ). Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 65, 3529–3538.
    [Google Scholar]
  23. Hughes, H. B., Carzaniga, R., Rawlings, S. L., Green, J. R. & O'Connell, R. J. ( 1999; ). Spore surface glycoproteins of Colletotrichum lindemuthianum are recognized by a monoclonal antibody which inhibits adhesion to polystyrene. Microbiology 145, 1927–1936.[CrossRef]
    [Google Scholar]
  24. Hwang, C. S. & Kolattukudy, P. E. ( 1995; ). Isolation and characterization of genes expressed uniquely during appressorium formation by Colletotrichum gloeosporioides conidia induced by the host surface wax. Mol Gen Genet 247, 282–294.[CrossRef]
    [Google Scholar]
  25. Inagaki, A., Takano, Y., Kubo, Y., Mise, K. & Furusawa, I. ( 2000; ). Construction of an equalized cDNA library from Colletotrichum lagenarium and its application to the isolation of differentially expressed genes. Can J Microbiol 46, 150–158.[CrossRef]
    [Google Scholar]
  26. Kamoun, S. ( 2006; ). A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44, 41–60.[CrossRef]
    [Google Scholar]
  27. Kämper, J., Kahmann, R., Bolker, M., Ma, L. J., Brefort, T., Saville, B. J., Banuett, F., Kronstad, J. W., Gold, S. E. & other authors ( 2006; ). Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444, 97–101.[CrossRef]
    [Google Scholar]
  28. Kemen, E., Kemen, A. C., Rafiqi, M., Hempel, U., Mendgen, K., Hahn, M. & Voegele, R. T. ( 2005; ). Identification of a protein from rust fungi transferred from haustoria into infected plant cells. Mol Plant Microbe Interact 18, 1130–1139.[CrossRef]
    [Google Scholar]
  29. Keon, J., Antoniw, J., Rudd, J., Skinner, W., Hargreaves, J. & Hammond-Kosack, K. ( 2005; ). Analysis of expressed sequence tags from the wheat leaf blotch pathogen Mycosphaerella graminicola (anamorph Septoria tritici). Fungal Genet Biol 42, 376–389.[CrossRef]
    [Google Scholar]
  30. Kimura, A., Takano, Y., Furusawa, I. & Okuno, T. ( 2001; ). Peroxisomal metabolic function is required for appressorium-mediated plant infection by Colletotrichum lagenarium. Plant Cell 13, 1945–1957.
    [Google Scholar]
  31. Klee, E. W. & Ellis, L. B. ( 2005; ). Evaluating eukaryotic secreted protein prediction. BMC Bioinformatics 6, 256 [CrossRef]
    [Google Scholar]
  32. Klee, E. W., Carlson, D. F., Fahrenkrug, S. C., Ekker, S. C. & Ellis, L. B. M. ( 2004; ). Identifying secretomes in people, pufferfish and pigs. Nucleic Acids Res 32, 1414–1421.[CrossRef]
    [Google Scholar]
  33. Klein, R. D., Gu, Q. M., Goddard, A. & Rosenthal, A. ( 1996; ). Selection for genes encoding secreted proteins and receptors. Proc Natl Acad Sci U S A 93, 7108–7113.[CrossRef]
    [Google Scholar]
  34. Langfelder, K., Streibel, M., Jahn, B., Haase, G. & Brakhage, A. A. ( 2003; ). Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38, 143–158.[CrossRef]
    [Google Scholar]
  35. Lee, S. J., Kelley, B. S., Damasceno, C. M. B., John, B. S., Kim, B. S., Kim, B. D. & Rose, J. K. C. ( 2006; ). A functional screen to characterize the secretomes of eukaryotic pathogens and their hosts in planta. Mol Plant Microbe Interact 19, 1368–1377.[CrossRef]
    [Google Scholar]
  36. Link, T. & Voegele, R. T. ( 2008; ). Secreted proteins of Uromyces fabae: similarities and stage specificity. Mol Plant Pathol 9, 59–66.
    [Google Scholar]
  37. Lionetti, V., Raiola, A., Camardella, L., Giovane, A., Obel, N., Pauly, M., Favaron, F., Cervone, F. & Bellincampi, D. ( 2007; ). Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol 143, 1871–1880.[CrossRef]
    [Google Scholar]
  38. Lommel, M., Bagnat, M. & Strahl, S. ( 2004; ). Aberrant processing of the WSC family and Mid2p cell surface sensors results in cell death of Saccharomyces cerevisiae O-mannosylation mutants. Mol Cell Biol 24, 46–57.[CrossRef]
    [Google Scholar]
  39. Lu, J. P., Liu, T. B. & Lin, F. C. ( 2005; ). Identification of mature appressorium-enriched transcripts in Magnaporthe grisea, the rice blast fungus, using suppression subtractive hybridization. FEMS Microbiol Lett 245, 131–137.[CrossRef]
    [Google Scholar]
  40. Martinez, A. T., Speranza, M., Ruiz-Duenas, F. J., Ferreira, P., Camarero, S., Guillen, F., Martinez, M. J., Gutierrez, A. & del Rio, J. C. ( 2005; ). Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8, 195–204.
    [Google Scholar]
  41. Mignone, F., Gissi, C., Liuni, S. & Pesole, G. ( 2002; ). Untranslated regions of mRNAs. Genome Biol 3, reviews0004
    [Google Scholar]
  42. Min, X. J., Butler, G., Storms, R. & Tsang, A. ( 2005; ). Targetldentifier: a webserver for identifying full-length cDNAs from EST sequences. Nucleic Acids Res 33, W669–W672.[CrossRef]
    [Google Scholar]
  43. Miyazaki, Y., Kaneko, S., Sunagawa, M., Shishido, K., Yamazaki, T., Nakamura, M. & Babasaki, K. ( 2007; ). The fruiting-specific Le.flp1 gene, encoding a novel fungal fasciclin-like protein, of the basidiomycetous mushroom Lentinula edodes. Curr Genet 51, 367–375.[CrossRef]
    [Google Scholar]
  44. Nadershahi, A., Fahrenkrug, S. C. & Ellis, L. B. M. ( 2004; ). Comparison of computational methods for identifying translation initiation sites in EST data. BMC Bioinformatics 5, 14 [CrossRef]
    [Google Scholar]
  45. Narusaka, Y., Narusaka, M., Park, P., Kubo, Y., Hirayama, T., Seki, M., Shiraishi, T., Ishida, J., Nakashima, M. & other authors ( 2004; ). RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. Mol Plant Microbe Interact 17, 749–762.[CrossRef]
    [Google Scholar]
  46. Nathues, E., Joshi, S., Tenberge, K. B., von den Driesch, M., Oeser, B., Baumer, N., Mihlan, M. & Tudzynski, P. ( 2004; ). CPTF1, a CREB-like transcription factor, is involved in the oxidative stress response in the phytopathogen Claviceps purpurea and modulates ROS level in its host Secale cereale. Mol Plant Microbe Interact 17, 383–393.[CrossRef]
    [Google Scholar]
  47. Nicholson, R. L., Butler, L. G. & Asquith, T. N. ( 1986; ). Glycoproteins from Colletotrichum graminicola that bind phenols: implications for survival and virulence of phytopathogenic fungi. Phytopathology 76, 1315–1318.[CrossRef]
    [Google Scholar]
  48. O'Connell, R., Herbert, C., Sreenivasaprasad, S., Khatib, M., Esquerre-Tugaye, M. T. & Dumas, B. ( 2004; ). A novel ArabidopsisColletotrichum pathosystem for the molecular dissection of plant–fungal interactions. Mol Plant Microbe Interact 17, 272–282.[CrossRef]
    [Google Scholar]
  49. Orbach, M. J., Farrall, L., Sweigard, J. A., Chumley, F. G. & Valent, B. ( 2000; ). A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12, 2019–2032.[CrossRef]
    [Google Scholar]
  50. Paper, J. M., Scott-Craig, J. S., Adhikari, N. D., Cuom, C. A. & Walton, J. D. ( 2007; ). Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Proteomics 7, 3171–3183.[CrossRef]
    [Google Scholar]
  51. Parisot, D., Dufresne, M., Veneault, C., Lauge, R. & Langin, T. ( 2002; ). clap1, a gene encoding a copper-transporting ATPase involved in the process of infection by the phytopathogenic fungus Colletotrichum lindemuthianum. Mol Genet Genomics 268, 139–151.[CrossRef]
    [Google Scholar]
  52. Perpetua, N. S., Kubo, Y., Takano, Y. & Furusawa, I. ( 1996; ). Cloning and characterization of a melanin biosynthetic THR1 reductase gene essential for appressorial penetration of Colletotrichum lagenarium. Mol Plant Microbe Interact 9, 323–329.[CrossRef]
    [Google Scholar]
  53. Plummer, K. M., Clark, S. J., Ellis, L. M., Loganathan, A., Al-Samarrai, T. H., Rikkerink, E. H. A., Sullivan, P. A., Templeton, M. D. & Farley, P. C. ( 2004; ). Analysis of a secreted aspartic peptidase disruption mutant of Glomerella cingulata. Eur J Plant Pathol 110, 265–274.[CrossRef]
    [Google Scholar]
  54. Rep, M. ( 2005; ). Small proteins of plant-pathogenic fungi secreted during host colonization. FEMS Microbiol Lett 253, 19–27.[CrossRef]
    [Google Scholar]
  55. Ridout, C. J., Skamnioti, P., Porritt, O., Sacristan, S., Jones, J. D. G. & Brown, J. K. M. ( 2006; ). Multiple avirulence paralogues in cereal powdery mildew fungi may contribute to parasite fitness and defeat of plant resistance. Plant Cell 18, 2402–2414.[CrossRef]
    [Google Scholar]
  56. Shimada, C., Lipka, V., O'Connel, R., Okuno, T., Schulze-Lefert, P. & Takano, Y. ( 2006; ). Nonhost resistance in ArabidopsisColletotrichum interactions acts at the cell periphery and requires actin filament function. Mol Plant Microbe Interact 19, 270–279.[CrossRef]
    [Google Scholar]
  57. Stephenson, S. A., Hatfield, J., Rusu, A., Maclean, D. J. & Manners, J. M. ( 2000; ). CgDN3: an essential pathogenicity gene of Colletotrichum gloeosporioides necessary to avert a hypersensitive-like response in the host Stylosanthes guianensis. Mol Plant Microbe Interact 13, 929–941.[CrossRef]
    [Google Scholar]
  58. Takano, Y., Kubo, Y., Shimizu, K., Mise, K., Okuno, T. & Furusawa, I. ( 1995; ). Structural analysis of PKS1, a polyketide synthase gene involved in melanin biosynthesis in Colletotrichum lagenarium. Mol Gen Genet 249, 162–167.[CrossRef]
    [Google Scholar]
  59. ten Have, A., Dekkers, E., Kay, J., Phylip, L. H. & van Kan, J. A. L. ( 2004; ). An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features. Microbiology 150, 2475–2489.[CrossRef]
    [Google Scholar]
  60. Tian, M. Y., Huitema, E., Da Cunha, L., Torto-Alalibo, T. & Kamoun, S. ( 2004; ). A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. J Biol Chem 279, 26370–26377.[CrossRef]
    [Google Scholar]
  61. Torto, T. A., Li, S. A., Styer, A., Huitema, E., Testa, A., Gow, N. A. R., van West, P. & Kamoun, S. ( 2003; ). EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res 13, 1675–1685.[CrossRef]
    [Google Scholar]
  62. Tsuji, G., Fujikawa, J., Ishida, H., Horino, O. & Kubo, Y. ( 2001; ). Laccase gene LAC1 of Colletotrichum lagenarium is not essential for melanin biosynthesis and pathogenicity. J Gen Plant Pathol 67, 182–190.[CrossRef]
    [Google Scholar]
  63. Tyler, B. M., Tripathy, S., Zhang, X. M., Dehal, P., Jiang, R. H. Y., Aerts, A., Arredondo, F. D., Baxter, L., Bensasson, D. & other authors ( 2006; ). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313, 1261–1266.[CrossRef]
    [Google Scholar]
  64. Valette-Collet, O., Cimerman, A., Reignault, P., Levis, C. & Boccara, M. ( 2003; ). Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Mol Plant Microbe Interact 16, 360–367.[CrossRef]
    [Google Scholar]
  65. van den Burg, H. A., Harrison, S. J., Joosten, M., Vervoort, J. & de Wit, P. ( 2006; ). Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol Plant Microbe Interact 19, 1420–1430.[CrossRef]
    [Google Scholar]
  66. Viaud, M. C., Balhadere, P. V. & Talbot, N. J. ( 2002; ). A Magnaporthe grisea cyclophilin acts as a virulence determinant during plant infection. Plant Cell 14, 917–930.[CrossRef]
    [Google Scholar]
  67. Viaud, M., Legeai, F., Pradier, J. M., Brygoo, Y., Bitton, F., Weissenbach, J., Brunet-Simon, A., Duclert, A., Fillinger, S. & other authors ( 2005; ). Expressed sequence tags from the phytopathogenic fungus Botrytis cinerea. Eur J Plant Pathol 111, 139–146.[CrossRef]
    [Google Scholar]
  68. Woo, S. H., Cho, J. S., Lee, B. S. & Kim, E. K. ( 2004; ). Decolorization of melanin by lignin peroxidase from Phanerochaete chrysosporium. Biotechnol Bioproc Eng 9, 256–260.[CrossRef]
    [Google Scholar]
  69. Xue, C. Y., Park, G., Choi, W. B., Zheng, L., Dean, R. A. & Xu, J. R. ( 2002; ). Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. Plant Cell 14, 2107–2119.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/014944-0
Loading
/content/journal/micro/10.1099/mic.0.2007/014944-0
Loading

Data & Media loading...

vol. , part 4, pp. 1204 - 1217

unique sequences and the EMBL accession numbers of their constituent ESTs. [PDF file](54 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error