Rapid tip-directed movement of Golgi equivalents in growing hyphae suggests a mechanism for delivery of growth-related materials Free

Abstract

Golgi equivalents (GEs) process materials in the fungal secretory pathway. Despite the importance of localized secretion in fungal tip growth, GE behaviour in living hyphae has not been documented. The distribution was monitored of an putative GE-associated protein, CopA, tagged with GFP (CopA–GFP). This co-localized with a Golgi body/GE marker established in other systems, -2,6-sialyltransferase, tagged with red fluorescent protein (ST–RFP). CopA–GFP and ST–RFP distributions responded similarly to brefeldin A, which impairs Golgi/GE trafficking. We used a CopA–GFP, strain to study GE distribution and behaviour in growing hyphae. This strain has a wild-type phenotype at 28 °C, can be manipulated by changing growth temperature or by use of cytoskeleton inhibitors, and its GE behaviour is consistent with that in a wild-type-morphology strain. GEs were more abundant at hyphal tips than subapically, and showed saltatory motility in all directions. Anterograde GE movements predominated. These were positively correlated with, but at least 10-fold faster than, hyphal growth rate, under all growth and experimental conditions investigated. The actin inhibitor latrunculin B reduced both anterograde GE movement and hyphal growth rate, whereas the microtubule (MT) depolymerizer benomyl increased anterograde GE movement and decreased hyphal growth rate. The MT stabilizer taxol increased GE movement but not hyphal growth rate. GE motility appears to have a complex dependence on both actin and MTs. We present a model for apical delivery of growth materials in which GEs play a role in long-distance transport.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/014811-0
2008-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/5/1544.html?itemId=/content/journal/micro/10.1099/mic.0.2007/014811-0&mimeType=html&fmt=ahah

References

  1. Akao T., Yamaguchi M., Yahara A., Yoshiuchi K., Fujita H., Yamada O., Akita O., Ohmachi T., Asada Y., Yoshida T. 2006; Cloning and expression of 1,2- α -mannosidase gene ( fmanIB ) from filamentous fungus Aspergillus oryzae : in vivo visualization of the FmanIBp-GFP fusion protein. Biosci Biotechnol Biochem 70:471–479
    [Google Scholar]
  2. Bartnicki-Garcia S. 2002; Hyphal tip growth: outstanding questions. In Molecular Biology of Fungal Development pp 29–58 Edited by Osiewacz H. D. Boca Raton, FL: CRC Press;
    [Google Scholar]
  3. Beckett A., Heath I., McLaughlin D. J. 1974 An Atlas of Fungal Ultrastructure London: Longman;
    [Google Scholar]
  4. Bentivoglio M., Mazzarello P. 1998; The pathway to the cell and its organelles: one hundred years of the Golgi apparatus. Endeavour 22:101–105
    [Google Scholar]
  5. Bevis B. J., Hammond A. T., Reinke C. A., Glick B. S. 2002; De novo formation of transitional ER sites and Golgi structures in Pichia pastoris . Nat Cell Biol 4:750–756
    [Google Scholar]
  6. Boevink P., Oparka K., Cruz S. S., Martin B., Betteridge A., Hawes C. 1998; Stacks on tracks: the plant Golgi apparatus traffics on an actin. Plant J 15:441–447
    [Google Scholar]
  7. Breakspear A., Langford K., Momany M., Assinder S. S. 2007; CopA: GFP localizes to putative Golgi equivalents in Aspergillus nidulans . FEMS Microbiol Lett 277:90–97
    [Google Scholar]
  8. Cole L., Davies D., Hyde G. J., Ashford A. E. 2000; Brefeldin A affects growth, endoplasmic reticulum, Golgi bodies, tubular vacuole system, and secretory pathway in Pisolithus tinctorius . Fungal Genet Biol 29:95–106
    [Google Scholar]
  9. daSilva L. L. P., Snapp E. L., Denecke J., Lippincott-Schwartz J., Hawes C., Brandizzi F. 2004; Endoplasmic reticulum export sites and Golgi bodies behave as single mobile secretory units in plant cells. Plant Cell 16:1753–1771
    [Google Scholar]
  10. Donaldson J. G., Finazzi D., Klausner R. D. 1992; Brefeldin A inhibits Golgi-membrane catalyzed exchange of guanine nucleotide onto ARF protein. Nature 360:350–352
    [Google Scholar]
  11. Farquhar M. G., Palade G. E. 1981; The Golgi apparatus (complex) – (1954–1981) from artifact to center stage. J Cell Biol 91:77s–103s
    [Google Scholar]
  12. Farquhar M. G., Palade G. E. 1998; The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol 8:2–10
    [Google Scholar]
  13. Felenbok B. 1991; The ethanol utilization regulon of Aspergillus nidulans : the AlcA–AlcR system as a tool for the expression of recombinant proteins. J Biotechnol 17:11–18
    [Google Scholar]
  14. Fernández-Ábalos J. M., Fox F., Pitt C., Wells B., Doonan J. H. 1998; Plant-adapted green fluorescent protein is a versatile vital reporter for gene expression, protein localization and mitosis in the filamentous fungus, Aspergillus nidulans . Mol Microbiol 27:121–130
    [Google Scholar]
  15. Fischer R., Veith D. 2007; The role of microtubules and motors for polarized growth of filamentous fungi. In Exploitation of Fungi: Symposium of the British Mycological Society held at the University of Manchester September 2005British Mycological Society Symposia no. 26 pp 95–116 Edited by Robson G. D., West P. Van, Gadd G. M. Cambridge: Cambridge University Press;
    [Google Scholar]
  16. Harris S. D., Morrell J. L., Hamer J. E. 1994; Identification and characterization of Aspergillus nidulans mutants defective in cytokinesis. Genetics 136:517–532
    [Google Scholar]
  17. Hawes C., Satiat-Jeunemaitre B. 2005; The plant Golgi apparatus – going with the flow. Biochim Biophys Acta 174493–107
    [Google Scholar]
  18. Heath I. B. 1990; The roles of actin in tip growth of fungi. Int Rev Cytol 123:95–127
    [Google Scholar]
  19. Heath I. B. 1995; The cytoskeleton. In The Growing Fungus , 1st edn. pp 99–134 Edited by Gow N. A. R., Gadd G. M. London: Chapman and Hall;
    [Google Scholar]
  20. Heath I. B., Kaminskyj S. G. W. 1989; The organization of tip-growth-related organelles and microtubules revealed by quantitative analysis of freeze-substituted oomycete hyphae. J Cell Sci 93:41–52
    [Google Scholar]
  21. Helms J. B., Rothman J. E. 1992; Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360:352–354
    [Google Scholar]
  22. Hirt H., Kogl M., Murbacher T. 1990; Evolutionary conservation of transcriptional machinery between yeast and plants as shown by the efficient expression from the CaMV 35S promoter and 35S terminator. Curr Genet 17:473–479
    [Google Scholar]
  23. Hohmann-Marriott M. F., Uchida M., van de Meene A. M. L., Garret M., Hjelm B. E., Kokoori S., Roberson R. W. 2006; Application of electron tomography to fungal ultrastructure studies. New Phytol 172:208–220
    [Google Scholar]
  24. Hubbard M., Kaminskyj S. G. W. 2007; Growth rate of Aspergillus nidulans hyphae is independent of a prominent array of microtubules. Mycol Prog 6:179–189
    [Google Scholar]
  25. Hubbard M. 2007 In vivo study of the role of the cytoskeleton and fungal Golgi in hyphal tip growth of Aspergillus nidulans MSc thesis University of Saskatchewan; Available at library2.usask.ca/theses/available/etd-05042007–171757
    [Google Scholar]
  26. Jackson C. L., Casanova J. E. 2000; Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol 10:60–67
    [Google Scholar]
  27. Jefferson R. A., Kavanagh T. A., Bevan M. W. 1987; GUS fusions: β -glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3908
    [Google Scholar]
  28. Kaminskyj S. G. W. 2001; Fundamentals of growth, storage, genetics and microscopy of Aspergillus nidulans . Fungal Genet Newsl 48:25–31
    [Google Scholar]
  29. Kaminskyj S. G. W., Boire M. R. 2004; Ultrastructure of the Aspergillus nidulans hypA1 restrictive phenotype shows defects in endomembrane arrays and polarized wall deposition. Can J Bot 82:807–814
    [Google Scholar]
  30. Kaminskyj S. G. W., Hamer J. E. 1998; hyp loci control cell pattern formation in the vegetative mycelium of Aspergillus nidulans . Genetics 148:669–680
    [Google Scholar]
  31. Kaminskyj S. G. W., Heath I. B. 1996; Studies on Saprolegnia ferax suggest the general importance of the cytoplasm in determining hyphal morphology. Mycologia 88:20–37
    [Google Scholar]
  32. Kaminskyj S. G. W., Jackson S. L., Heath I. B. 1992; Fixation induces differential polarized translocations of organelles in hyphae of Saprolegnia ferax . J Microsc 167:153–168
    [Google Scholar]
  33. Khalaj V., Brookman J. L., Robson G. D. 2001; A study of the protein secretory pathway of Aspergillus niger using a glucoamylase–GFP fusion protein. Fungal Genet Biol 32:55–65
    [Google Scholar]
  34. Kurtz M. B., Heath I. B., Marrinan J., Dreikorn S., Onishi J., Douglas C. 1994; Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1,3)- β -d-glucanase. Antimicrob Agents Chemother 38:1480–1489
    [Google Scholar]
  35. Li A., Altosaar I., Heath M. C., Horgen P. A. 1993; Transient expression of the beta-glucuronidase gene delivered into urediniospores of Uromyces appendiculatus by particle bombardment. Can J Plant Pathol 15:1–6
    [Google Scholar]
  36. Losev E., Reinke C. A., Jellen J., Strongin D. E., Bevis B. J., Glick B. S. 2006; Golgi maturation visualized in living yeast. Nature 441:1002–1006
    [Google Scholar]
  37. Maruyama J., Kitamoto K. 2007; Differential distribution of the endoplasmic reticulum network in filamentous fungi. FEMS Microbiol Lett 272:1–7
    [Google Scholar]
  38. Matheson L. A., Hanton S. L., Brandizzi F. 2006; Traffic between the plant endoplasmic reticulum and Golgi apparatus: to the Golgi and beyond. Curr Opin Plant Biol 9:601–609
    [Google Scholar]
  39. Matsuura-Tokita K., Takeuchi M., Ichihara A., Mikuriya K., Nakano A. 2006; Live imaging of yeast Golgi cisternal maturation. Nature 441:1007–1010
    [Google Scholar]
  40. McGoldrick C. A., Gruver C., May G. S. 1995; myoA of Aspergillus nidulans encodes an essential myosin I required for secretion and polarized growth. J Cell Biol 128:577–587
    [Google Scholar]
  41. Mogelsvang S., Howell K. E. 2006; Global approaches to study Golgi function. Curr Opin Cell Biol 18:438–443
    [Google Scholar]
  42. Mogelsvang S., Gomez-Ospina N., Soderholm J., Glick B. S., Staehelin L. A. 2003; Tomographic evidence for continuous turnover of Golgi cisternae in Pichia pastoris . Mol Biol Cell 14:2277–2291
    [Google Scholar]
  43. Morris N. R., Xiang X., Beckwith S. M. 1995; Nuclear migration advances in fungi. Trends Cell Biol 5:278–282
    [Google Scholar]
  44. Munro S. 1991; Sequences within and adjacent to the transmembrane segment of α -2,6-sialyltransferase specify Golgi retention. EMBO J 10:3577–3588
    [Google Scholar]
  45. Odell J. T., Nagy F. 1985; Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812
    [Google Scholar]
  46. Rida P. C. G., Nishikawa A., Won G. Y., Dean N. 2006; Yeast-to-hyphal transition triggers formin-dependent Golgi localization to the growing tip in Candida albicans . Mol Biol Cell 17:4364–4378
    [Google Scholar]
  47. Rupeš I., Mao W. Z., Astrom H., Raudaskoski M. 1995; Effect of nocodazole and brefeldin-A on microtubule cytoskeleton and membrane organization in the homobasidiomycete Schizophyllum commune . Protoplasma 185:212–221
    [Google Scholar]
  48. Schwientek T., Lorenz C., Ernst J. F. 1995; Golgi localization in yeast is mediated by the membrane anchor region of rat liver sialyltransferase. J Biol Chem 270:5483–5489
    [Google Scholar]
  49. Sharpless K. E., Harris S. D. 2002; Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol Biol Cell 13:469–479
    [Google Scholar]
  50. Shi X., Sha Y., Kaminskyj S. 2004; Aspergillus nidulans hypA regulates morphogenesis through the secretion pathway. Fungal Genet Biol 41:75–88
    [Google Scholar]
  51. Suelmann R., Fischer R. 2000a; Mitochondrial movement and morphology depend on an intact actin cytoskeleton in Aspergillus nidulans . Cell Motil Cytoskeleton 45:42–50
    [Google Scholar]
  52. Suelmann R., Fischer R. 2000b; Nuclear migration in fungi: different motors at work. Res Microbiol 151:247–254
    [Google Scholar]
  53. Sun L., Cai H., Xu W., Hu Y., Lin Z. 2002; CaMV 35S promoter directs β -glucuronidase expression in Ganoderma lucidum and Pleurotus citrinopileatus . Mol Biotechnol 20:239–244
    [Google Scholar]
  54. Wee E. G.-T., Sherrier D. J., Prime T. A., Dupree P. 1998; Targeting of active sialyltransferase to the plant Golgi apparatus. Plant Cell 10:1759–1768
    [Google Scholar]
  55. Whittaker S. L., Lunness P., Milward K. J., Doonan J. H., Assinder S. J. 1999; sodVIC is an α -COP-related gene which is essential for establishing and maintaining polarized growth in Aspergillus nidulans . Fungal Genet Biol 26:236–252
    [Google Scholar]
  56. Xu X., Mang J., Li X., Yu M., Ru B. 2004; Expression of human intestinal trefoil factor (hITF) in transgenic Pleurotus ostreatus and its ELISA assay. Acta Microbiol Sin 44:609–612
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/014811-0
Loading
/content/journal/micro/10.1099/mic.0.2007/014811-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed