Biofilm formation by saprophytic and pathogenic leptospires Free

Abstract

Leptospires exist as saprophytic organisms that are aquatic or as pathogens that are able to survive in water. Leptospirosis is transmitted to humans through environmental surface waters contaminated by the urine of mammals, usually rodents, which are chronically infected by pathogenic strains. The ecology of spp. prompted us to evaluate if these spirochaetes were able to form biofilms. This study investigated the characteristics of biofilm development by both saprophytic and pathogenic species using microscopic examinations and a polystyrene plate model. Biofilms were formed preferentially on glass and polystyrene surfaces. Electron microscopic images showed cells embedded in an extracellular matrix. The formation of such a biofilm is consistent with the life of saprophytic strains in water and may help pathogenic strains to survive in environmental habitats and to colonize the host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/014746-0
2008-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/5/1309.html?itemId=/content/journal/micro/10.1099/mic.0.2007/014746-0&mimeType=html&fmt=ahah

References

  1. Bulach D. M., Zuerner R. L., Wilson P., Seemann T., McGrath A., Cullen P. A., Davis J., Johnson M., Kuczek E. other authors 2006; Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. Proc Natl Acad Sci U S A 103:14560–14565
    [Google Scholar]
  2. Ellinghausen H. C., McCullough W. G. 1965; Nutrition of Leptospira pomona and growth of 13 other serotypes: fractionation of oleic albumin complex and a medium of bovine albumin and polysorbate 80. Am J Vet Res 26:45–51
    [Google Scholar]
  3. Faine S., Adler B., Bolin C., Perolat P. 1999 Leptospira and Leptospirosis Melbourne, Australia: MedScience;
    [Google Scholar]
  4. Ganoza C. A., Matthias M. A., Collins-Richards D., Brouwer K. C., Cunningham C. B., Segura E. R., Gilman R. H., Gotuzzo E., Vinetz J. M. 2006; Determining risk for severe leptospirosis by molecular analysis of environmental surface waters for pathogenic Leptospira . PLoS Med 3:e308
    [Google Scholar]
  5. Haake D. A., Walker E. M., Blanco D. R., Bolin C. A., Miller M. N., Lovett M. A. 1991; Changes in the surface of Leptospira interrogans serovar grippotyphosa during in vitro cultivation. Infect Immun 59:1131–1140
    [Google Scholar]
  6. Hall-Stoodley L., Costerton J. W., Stoodley P. 2004; Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108
    [Google Scholar]
  7. Henry R. A., Johnson R. C. 1978; Distribution of the genus Leptospira in soil and water. Appl Environ Microbiol 35:492–499
    [Google Scholar]
  8. Johnson R. C., Harris V. G. 1967; Differentiation of pathogenic and saprophytic leptospires. J Bacteriol 94:27–31
    [Google Scholar]
  9. Levett P. N. 2001; Leptospirosis. Clin Microbiol Rev 14:296–326
    [Google Scholar]
  10. Louvel H., Picardeau M. 2007 Genetic Manipulation of Leptospira biflexa Hoboken, NJ: Wiley;
    [Google Scholar]
  11. Louvel H., Saint Girons I., Picardeau M. 2005; Isolation and characterization of FecA- and FeoB-mediated iron acquisition systems of the spirochete Leptospira biflexa by random insertional mutagenesis. J Bacteriol 187:3249–3254
    [Google Scholar]
  12. Louvel H., Bommezzadri S., Zidane N., Boursaux-Eude C., Creno S., Magnier A., Rouy Z., Médigue C., Saint Girons I. other authors 2006; Comparative and functional genomic analyses of iron transport and regulation in Leptospira spp. J Bacteriol 188:7893–7904
    [Google Scholar]
  13. McBride A. J., Athanazio D. A., Reis M. G., Ko A. I. 2005; Leptospirosis. Curr Opin Infect Dis 18:376–386
    [Google Scholar]
  14. Nascimento A. L., Ko A. I., Martins E. A., Monteiro-Vitorello C. B., Ho P. L., Haake D. A., Verjovski-Almeida S., Hartskeerl R. A., Marques M. V. other authors 2004; Comparative genomics of two Leptospira interrogans serovars reveals novel insights into physiology and pathogenesis. J Bacteriol 186:2164–2172
    [Google Scholar]
  15. Picardeau M., Brenot A., Saint Girons I. 2001; First evidence for gene replacement in Leptospira spp.: inactivation of L. biflexa flaB results in non-motile mutants deficient in endoflagella. Mol Microbiol 40:189–199
    [Google Scholar]
  16. Ren S. X., Fu G., Jiang X. G., Zeng R., Miao Y. G., Xu H., Zhang Y. X., Xiong H., Lu G. other authors 2003; Unique and physiological and pathogenic features of Leptospira interrogans revealed by whole genome sequencing. Nature 422:888–893
    [Google Scholar]
  17. Singh R., Stine O. C., Smith D. L., Spitznagel J. K. Jr, Labib M. E., Williams H. N. 2003; Microbial diversity of biofilms in dental unit water systems. Appl Environ Microbiol 69:3412–3420
    [Google Scholar]
  18. Trueba G., Zapata S., Madrid K., Cullen P., Haake D. 2004; Cell aggregation: a mechanism of pathogenic Leptospira to survive in fresh water. Int Microbiol 7:35–40
    [Google Scholar]
  19. Vesey P. M., Kuramitsu H. K. 2004; Genetic analysis of Treponema denticola ATCC 35405 biofilm formation. Microbiology 150:2401–2407
    [Google Scholar]
  20. Wang B. Y., Chi B., Kuramitsu H. K. 2002; Genetic exchange between Treponema denticola and Streptococcus gordonii in biofilms. Oral Microbiol Immunol 17:108–112
    [Google Scholar]
  21. WHO 1999; Leptospirosis worldwide, 1999. Wkly Epidemiol Rec 74:237–242
    [Google Scholar]
  22. Wood J., Johnson R. C., Palin K. 1981; Surface colonies of Leptospira interrogans . J Clin Microbiol 13:102–105
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/014746-0
Loading
/content/journal/micro/10.1099/mic.0.2007/014746-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed