1887

Abstract

The small heat-shock proteins IbpA/B are molecular chaperones that bind denatured proteins and facilitate their subsequent refolding by the ATP-dependent chaperones DnaK, DnaJ, GrpE and ClpB. In this report, we demonstrate that IbpA/B participate in the defence against copper-induced stress under aerobic conditions. In the presence of oxygen, Δ cells exhibit increased sensitivity to copper ions and accumulate elevated amounts of oxidized proteins, while under oxygen depletion, the Δ mutation has no effect on copper tolerance. This indicates that IbpA/B protect cells from oxidative damage caused by copper. We show that AdhE, one of the proteins exposed to oxidation, is protected by IbpA/B against copper-mediated inactivation both and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/014696-0
2008-06-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/6/1739.html?itemId=/content/journal/micro/10.1099/mic.0.2007/014696-0&mimeType=html&fmt=ahah

References

  1. Allen, S. P., Polazzi, J. O., Gierse, J. K. & Easton, A. M. ( 1992; ). Two novel heat shock genes encoding proteins produced in response to heterologous protein experession in Escherichia coli. J Bacteriol 174, 6938–6947.
    [Google Scholar]
  2. Avery, S. V., Howlett, N. G. & Radice, S. ( 1996; ). Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl Environ Microbiol 62, 3960–3966.
    [Google Scholar]
  3. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  4. Cecarini, V., Gee, J., Fioretii, E., Amici, M., Angeletti, M., Eleuteri, A. M. & Keller, J. N. ( 2007; ). Protein oxidation and cellular homeostasis: emphasis on metabolism. Biochim Biophys Acta 1773, 93–104.[CrossRef]
    [Google Scholar]
  5. DiGiuseppe, P. A. & Silhavy, T. J. ( 2003; ). Signal detection and target gene induction by the CpxRA two-component system. J Bacteriol 185, 2432–2440.[CrossRef]
    [Google Scholar]
  6. Dukan, S. & Nyström, T. ( 1998; ). Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. Genes Dev 12, 3431–3441.[CrossRef]
    [Google Scholar]
  7. Echave, P., Esparca-Ceron, M. A., Cabiscol, E., Tamarit, J., Ros, J., Membrillo-Hernández, J. & Lin, E. C. C. ( 2002; ). DnaK dependence of mutant ethanol oxidoreductases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli. Proc Natl Acad Sci U S A 99, 4626–4631.[CrossRef]
    [Google Scholar]
  8. Egler, M., Grosse, C., Grass, G. & Nies, D. H. ( 2005; ). Role of extracytoplasmic function protein family sigma factor RpoE in metal resistance of Escherichia coli. J Bacteriol 187, 2297–2307.[CrossRef]
    [Google Scholar]
  9. Fredriksson, A., Ballesteros, M., Dukan, S. & Nyström, T. ( 2005; ). Defence against protein carbonylation by DnaK/DnaJ and proteases of the heat shock regulon. J Bacteriol 187, 4207–4213.[CrossRef]
    [Google Scholar]
  10. Ganadu, M. L., Aru, M., Mura, G. M., Coi, A., Mlynarz, P. & Kozlowski, H. ( 2004; ). Effects of divalent metal ions on the alphaB-crystallin chaperone-like activity: spectroscopic evidence for a complex between copper(II) and protein. J Inorg Biochem 98, 1103–1109.[CrossRef]
    [Google Scholar]
  11. Geuskens, V., Mhammedi-Alaoui, A., Desmet, L. & Toussaint, A. ( 1992; ). Virulence in bacteriophage Mu: a case of transdominant proteolysis by the Escherichia coli Clp serine protease. EMBO J 11, 5121–5127.
    [Google Scholar]
  12. Grass, G. & Rensing, C. ( 2001; ). Genes involved in copper homeostasis in Escherichia coli. J Bacteriol 183, 2145–2147.[CrossRef]
    [Google Scholar]
  13. Haslbeck, M., Franzmann, T., Weinfurtner, D. & Buchner, J. ( 2005; ). Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12, 842–846.[CrossRef]
    [Google Scholar]
  14. Hiniker, A., Collet, J. F. & Bardwell, J. C. ( 2005; ). Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J Biol Chem 280, 33785–33791.[CrossRef]
    [Google Scholar]
  15. Jiao, W., Li, P., Zhang, J., Zhang, H. & Chang, Z. ( 2005; ). Small heat-shock proteins function in the insoluble protein complex. Biochem Biophys Res Commun 335, 227–231.[CrossRef]
    [Google Scholar]
  16. Kershaw, C. J., Brown, N. L., Constantinidou, C., Patel, M. D. & Hobman, J. L. ( 2005; ). The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology 151, 1187–1198.[CrossRef]
    [Google Scholar]
  17. Kessler, D., Herth, W. & Knappe, J. ( 1992; ). Ultrastructure and pyruvate formate-lyase radical quenching property of the multienzymic AdhE protein of Escherichia coli. J Biol Chem 267, 18073–18079.
    [Google Scholar]
  18. Kitagawa, M., Miyakawa, M., Matsumura, Y. & Tsuchido, T. ( 2000; ). Small heat shock proteins, IbpA and IbpB, are involved in resistances to heat and superoxide stress in Escherichia coli. FEMS Microbiol Lett 184, 165–171.[CrossRef]
    [Google Scholar]
  19. Kitagawa, M., Miyakawa, M., Matsumura, Y. & Tsuchido, T. ( 2002; ). Escherichia coli small heat shock proteins, IbpA and IbpB, protect enzymes from inactivation by heat and oxidants. Eur J Biochem 269, 2907–2917.[CrossRef]
    [Google Scholar]
  20. Kucharczyk, K., Laskowska, E. & Taylor, A. ( 1991; ). Response of Escherichia coli cell membranes to induction of lambda cl857 prophage by heat shock. Mol Microbiol 5, 2935–2945.[CrossRef]
    [Google Scholar]
  21. Kuczyńska-Wiśnik, D., Kędzierska, S., Matuszewska, E., Lund, P., Taylor, A., Lipińska, B. & Laskowska, E. ( 2002; ). The Escherichia coli small heat-shock proteins IbpA and IbpB prevent the aggregation of endogenous proteins denatured in vivo during extreme heat shock. Microbiology 148, 1757–1765.
    [Google Scholar]
  22. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  23. Laskowska, E., Wawrzynów, A. & Taylor, A. ( 1996; ). IbpA and IbpB, the new heat shock proteins, bind to endogenous Escherichia coli proteins aggregated intracellularly by heat shock. Biochimie 78, 117–122.[CrossRef]
    [Google Scholar]
  24. Laskowska, E., Kuczyńska-Wiśnik, D., Bąk, M. & Lipińska, B. ( 2003; ). Trimethoprim induces heat shock proteins and protein aggregation in E. coli cells. Curr Microbiol 47, 286–289.[CrossRef]
    [Google Scholar]
  25. Macomber, L., Rensing, C. & Imlay, J. A. ( 2007; ). Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol 189, 1616–1626.[CrossRef]
    [Google Scholar]
  26. Matayoshi, S., Oda, H. & Sarwar, G. ( 1989; ). Relationship between the production of spirosomes and anaerobic glycolysis activity in Escherichia coli B. J Gen Microbiol 135, 525–529.
    [Google Scholar]
  27. Matuszewska, M., Kuczyńska-Wiśnik, D., Laskowska, E. & Liberek, K. ( 2005; ). The small heat shock protein IbpA from Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state. J Biol Chem 280, 12292–12298.[CrossRef]
    [Google Scholar]
  28. Membrillo-Hernández, J., Echave, P., Cabiscol, E., Tamarit, J., Ros, J. & Lin, E. C. C. ( 2000; ). Evolution of the adhE gene product of Escherichia coli from a functional reductase to a dehydrogenase. Genetic and biochemical studies of the mutant proteins. J Biol Chem 275, 33869–33875.[CrossRef]
    [Google Scholar]
  29. Mogk, A., Tomoyasu, T., Goloubinoff, P., Rüdiger, S., Röder, D., Langen, H. & Bukau, B. ( 1999; ). Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18, 6934–6949.[CrossRef]
    [Google Scholar]
  30. Mogk, A., Deuerling, E., Vorderwülbecke, S., Vierling, E. & Bukau, B. ( 2003a; ). Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol 50, 585–595.[CrossRef]
    [Google Scholar]
  31. Mogk, A., Schlieker, C., Friedrich, K. L., Schönfeld, H. J., Vierling, E. & Bukau, B. ( 2003b; ). Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J Biol Chem 278, 31033–31042.[CrossRef]
    [Google Scholar]
  32. Moschini, R., Marini, I., Malerba, M., Cappiello, M., Del Corso, A. & Mura, U. ( 2006; ). Chaperone-like activity of α-crystallin toward aldose reductase oxidatively stressed by copper ion. Arch Biochem Biophys 453, 13–17.[CrossRef]
    [Google Scholar]
  33. Nakamoto, H. & Vigh, L. ( 2007; ). The small heat shock proteins and their clients. Cell Mol Life Sci 64, 294–306.[CrossRef]
    [Google Scholar]
  34. Narberhaus, F. ( 2002; ). α-Crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol Mol Biol Rev 66, 64–93.[CrossRef]
    [Google Scholar]
  35. Nnyepi, M. R., Peng, Y. & Broderick, J. B. ( 2007; ). Inactivation of E. coli pyruvate formate-lyase: role of AdhE and small molecules. Arch Biochem Biophys 459, 1–9.[CrossRef]
    [Google Scholar]
  36. Nyström, T. ( 2005; ). Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24, 1311–1317.[CrossRef]
    [Google Scholar]
  37. Outten, F. W., Huffman, D. L., Hale, J. A. & O'Halloran, T. V. ( 2001; ). The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J Biol Chem 276, 30670–30677.[CrossRef]
    [Google Scholar]
  38. Pérez, J. M., Calderón, I. L., Arenas, F. A., Fuentes, D. E., Pradenas, G. A., Fuentes, E. L., Sandoval, J. M., Castro, M. E., Elías, A. O. & Vásquez, C. C. ( 2007; ). Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PLoS ONE 2, e211 [CrossRef]
    [Google Scholar]
  39. Silver, S. & Phung, L. T. ( 2005; ). A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32, 587–605.[CrossRef]
    [Google Scholar]
  40. Stadtman, E. R. ( 1991; ). Ascorbic acid and oxidative inactivation of proteins. Am J Clin Nutr 54, 1125S–1128S.
    [Google Scholar]
  41. Storz, G. & Imlay, J. A. ( 1999; ). Oxidative stress. Curr Opin Microbiol 2, 188–194.[CrossRef]
    [Google Scholar]
  42. Suwalsky, M., Ungerer, B., Quevedo, L., Aguilar, F. & Sotomayor, C. P. ( 1998; ). Cu2+ ions interact with cell membranes. J Inorg Biochem 70, 233–238.[CrossRef]
    [Google Scholar]
  43. Tamarit, J., Cabiscol, E. & Ros, J. ( 1998; ). Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J Biol Chem 273, 3027–3032.[CrossRef]
    [Google Scholar]
  44. Tree, J. J., Kidd, S. P., Jennings, M. P. & McEwan, A. G. ( 2005; ). Copper sensitivity of cueO mutants of Escherichia coli K-12 and the biochemical suppression of this phenotype. Biochem Biophys Res Commun 328, 1205–1210.[CrossRef]
    [Google Scholar]
  45. Veinger, L., Diamant, S., Buchner, J. & Goloubinoff, P. ( 1998; ). The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273, 11032–11037.[CrossRef]
    [Google Scholar]
  46. Winter, J., Linke, K., Jatzek, A. & Jakob, U. ( 2005; ). Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33. Mol Cell 17, 381–392.[CrossRef]
    [Google Scholar]
  47. Yamamoto, K. & Ishihama, A. ( 2005; ). Transcriptional response of Escherichia coli to external copper. Mol Microbiol 56, 215–227.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/014696-0
Loading
/content/journal/micro/10.1099/mic.0.2007/014696-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error