1887

Abstract

The motor proteins FliM and FliG physically interact, presumably to control one or more of the functions of the bacterial flagellum clockwise/counterclockwise (CW/CCW) switch. We have previously demonstrated this interaction using the yeast two-hybrid system and have identified mutations in that disrupt the interaction. Starting with the most interaction-defective of these mutants, we mutagenized to identify suppressor mutations that restore the FliM/FliG two-hybrid interaction. Certain suppressor mutations exhibit allele specificity. These mutations help define a FliG-interaction surface on FliM. Moreover, the pattern of suppression suggests that two distinct sites on FliG interact with FliM, perhaps with two FliM molecules in a dimer per molecule of FliG.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/014597-0
2008-03-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/714.html?itemId=/content/journal/micro/10.1099/mic.0.2007/014597-0&mimeType=html&fmt=ahah

References

  1. Armstrong, J. B., Adler, J. & Dahl, M. M. ( 1967; ). Nonchemotactic mutants of Escherichia coli. J Bacteriol 93, 390–398.
    [Google Scholar]
  2. Bartlett, D. H. & Matsumura, P. ( 1984; ). Identification of Escherichia coli region III flagellar gene products and description of two new flagellar genes. J Bacteriol 160, 577–585.
    [Google Scholar]
  3. Berg, H. C. ( 1988; ). A physicist looks at bacterial chemotaxis. Cold Spring Harb Symp Quant Biol 53, 1–9.[CrossRef]
    [Google Scholar]
  4. Blomfield, I. C., Vaughn, V., Rest, R. F. & Eisenstein, B. I. ( 1991; ). Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101 replicon. Mol Microbiol 5, 1447–1457.[CrossRef]
    [Google Scholar]
  5. Brent, R. & Finley, R. L., Jr ( 1997; ). Understanding gene and allele function with two-hybrid methods. Annu Rev Genet 31, 663–704.[CrossRef]
    [Google Scholar]
  6. Brown, P. N., Hill, C. P. & Blair, D. F. ( 2002; ). Crystal structure of the middle and C-terminal domains of the flagellar rotor protein FliG. EMBO J 21, 3225–3234.[CrossRef]
    [Google Scholar]
  7. Brown, P. N., Mathews, M. A. A., Joss, L. A., Hill, C. P. & Blair, D. F. ( 2005; ). Crystal structure of the flagellar rotor protein FliN from Thermotoga maritima. J Bacteriol 187, 2890–2902.[CrossRef]
    [Google Scholar]
  8. Brown, P. N., Terrazas, M., Paul, K. & Blair, D. F. ( 2007; ). Mutational analysis of the flagellar protein FliG: sites of interaction with FliM and implications for organization of the switch complex. J Bacteriol 189, 305–312.[CrossRef]
    [Google Scholar]
  9. Chien, C.-T., Bartel, P. L., Sternglanz, R. & Fields, S. ( 1991; ). The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A 88, 9578–9582.[CrossRef]
    [Google Scholar]
  10. Estojak, J., Brent, R. & Golemis, E. A. ( 1995; ). Correlation of two-hybrid affinity data with in vitro measurements. Mol Cell Biol 15, 5820–5829.
    [Google Scholar]
  11. Fields, S. & Song, O.-K. ( 1989; ). A novel genetic system to detect protein–protein interactions. Nature 340, 245–246.[CrossRef]
    [Google Scholar]
  12. Francis, N. R., Irikura, V. M., Yamaguchi, S., DeRosier, D. J. & Macnab, R. M. ( 1992; ). Localization of the Salmonella typhimurium flagellar switch protein FliG to the cytoplasmic M-ring face of the basal body. Proc Natl Acad Sci U S A 89, 6304–6308.[CrossRef]
    [Google Scholar]
  13. Francis, N. R., Sosinsky, G. E., Thomas, D. & DeRosier, D. J. ( 1994; ). Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. J Mol Biol 235, 1261–1270.[CrossRef]
    [Google Scholar]
  14. Gill, G. & Ptashne, M. ( 1987; ). Mutants of GAL4 protein altered in activation function. Cell 51, 121–126.[CrossRef]
    [Google Scholar]
  15. Gillen, K. L. & Hughes, K. T. ( 1991; ). Negative regulatory loci coupling flagellin synthesis to flagellar assembly in Salmonella typhimurium. J Bacteriol 173, 6453–6459.
    [Google Scholar]
  16. González-Pedrajo, B., Minamino, T., Kihara, M. & Namba, K. ( 2006; ). Interactions between C ring proteins and export apparatus components: a possible mechanism for facilitating type III protein export. Mol Microbiol 60, 984–998.[CrossRef]
    [Google Scholar]
  17. Grünenfelder, B., Gehrig, S. & Jenal, U. ( 2003; ). Role of the cytoplasmic C terminus of the FliF motor protein in flagellar assembly and rotation. J Bacteriol 185, 1624–1633.[CrossRef]
    [Google Scholar]
  18. Heimbrook, M. E., Wang, W. L. L. & Campbell, G. ( 1989; ). Staining bacterial flagella easily. J Clin Microbiol 27, 2612–2615.
    [Google Scholar]
  19. Irikura, V. M., Kihara, M., Yamaguchi, S., Sockett, H. & Macnab, R. M. ( 1993; ). Salmonella typhimurium fliG and fliN mutations causing defects in assembly, rotation, and switching of the flagellar motor. J Bacteriol 175, 802–810.
    [Google Scholar]
  20. Jarvik, J. & Botstein, D. ( 1975; ). Conditional-lethal mutations that suppress genetic defects in morphogenesis by altering structural proteins. Proc Natl Acad Sci U S A 72, 2738–2742.[CrossRef]
    [Google Scholar]
  21. Jones, C. J., Macnab, R. M., Okino, H. & Aizawa, S. ( 1990; ). Stoichiometric analysis of the flagellar hook-(basal-body) complex of Salmonella typhimurium. J Mol Biol 212, 377–387.[CrossRef]
    [Google Scholar]
  22. Khan, I. H., Reese, T. S. & Khan, S. ( 1992; ). The cytoplasmic component of the bacterial flagellar motor. Proc Natl Acad Sci U S A 89, 5956–5960.[CrossRef]
    [Google Scholar]
  23. Khan, S., Zhao, R. & Reese, T. S. ( 1998; ). Architectural features of the Salmonella typhimurium flagellar motor switch revealed by disrupted C-rings. J Struct Biol 122, 311–319.[CrossRef]
    [Google Scholar]
  24. Kihara, M., Miller, G. U. & Macnab, R. M. ( 2000; ). Deletion analysis of the flagellar switch protein FliG of Salmonella. J Bacteriol 182, 3022–3028.[CrossRef]
    [Google Scholar]
  25. Kutsukake, K., Ohya, Y. & Iino, T. ( 1990; ). Transcriptional analysis of the flagellar regulon in Salmonella typhimurium. J Bacteriol 172, 741–747.
    [Google Scholar]
  26. Lloyd, S. A., Tang, H., Wang, X., Billings, S. & Blair, D. F. ( 1996; ). Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN. J Bacteriol 178, 223–231.
    [Google Scholar]
  27. Lloyd, S. A., Whitby, F. G., Blair, D. F. & Hill, C. P. ( 1999; ). Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature 400, 472–475.[CrossRef]
    [Google Scholar]
  28. Magariyama, Y., Yamaguchi, S. & Aizawa, S. ( 1990; ). Genetic and behavioral analysis of flagellar switch mutants of Salmonella typhimurium. J Bacteriol 172, 4359–4369.
    [Google Scholar]
  29. Marykwas, D. L. & Berg, H. C. ( 1996; ). A mutational analysis of the interaction between FliG and FliM, two components of the flagellar motor of Escherichia coli. J Bacteriol 178, 1289–1294.
    [Google Scholar]
  30. Marykwas, D. L. & Passmore, S. E. ( 1995; ). Mapping by multifragment cloning in vivo. Proc Natl Acad Sci U S A 92, 11701–11705.[CrossRef]
    [Google Scholar]
  31. Marykwas, D. L., Schmidt, S. A. & Berg, H. C. ( 1996; ). Interacting components of the flagellar motor of Escherichia coli revealed by the two-hybrid system in yeast. J Mol Biol 256, 564–576.[CrossRef]
    [Google Scholar]
  32. Mathews, M. A. A., Tang, H. L. & Blair, D. F. ( 1998; ). Domain analysis of the FliM protein of Escherichia coli. J Bacteriol 180, 5580–5590.
    [Google Scholar]
  33. Miller, J. H. ( 1992; ). A Short Course in Bacterial Genetics, a Laboratory Manual for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY: Cold Spring Harbor Press.
  34. Oosawa, K., Ueno, T. & Aizawa, S.-I. ( 1994; ). Overproduction of the bacterial flagellar switch complex proteins and their interactions with the MS ring complex in vitro. J Bacteriol 176, 3683–3691.
    [Google Scholar]
  35. Park, S. Y., Chao, X., Gonzalez-Bonet, G., Beel, B. D., Bilwes, A. M. & Crane, B. R. ( 2004; ). Structure and function of an unusual family of protein phosphatases: the bacterial chemotaxis proteins CheC and CheX. Mol Cell 16, 563–574.
    [Google Scholar]
  36. Park, S. Y., Lowder, B., Bilwes, A. M., Blair, D. F. & Crane, B. R. ( 2006; ). Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. Proc Natl Acad Sci U S A 103, 11886–11891.[CrossRef]
    [Google Scholar]
  37. Parkinson, J. S., Parker, S. R., Talbert, P. B. & Houts, S. E. ( 1983; ). Interactions between chemotaxis genes and flagellar genes in Escherichia coli. J Bacteriol 155, 265–274.
    [Google Scholar]
  38. Sandrock, T. M., O'Dell, J. L. & Adams, A. E. M. ( 1997; ). Allele-specific suppression by formation of new protein–protein interactions in yeast. Genetics 147, 1635–1642.
    [Google Scholar]
  39. Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. ( 2003; ). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31, 3381–3385.[CrossRef]
    [Google Scholar]
  40. Scott, W. R. P., Hünenberger, P. H., Tironi, I. G., Mark, A. E., Billeter, S. R., Fennen, J., Torda, A. E., Huber, T., Krüger, P. & van Gunsteren, W. F. ( 1999; ). The GROMOS biomolecular simulation program package. J Phys Chem A 103, 3596–3607.[CrossRef]
    [Google Scholar]
  41. Silverman, M. & Simon, S. ( 1974; ). Flagellar rotation and the mechanism of bacterial motility. Nature 249, 73–74.[CrossRef]
    [Google Scholar]
  42. Sockett, H., Yamaguchi, S., Kihara, M., Irikura, V. M. & Macnab, R. M. ( 1992; ). Molecular analysis of the flagellar switch protein FliM of Salmonella typhimurium. J Bacteriol 174, 793–806.
    [Google Scholar]
  43. Sosinsky, G. E., Francis, N. R., DeRosier, D. J., Wall, J. S., Simon, M. N. & Hainfeld, J. ( 1992; ). Mass determination and estimation of subunit stoichiometry of the bacterial hook–basal body flagellar complex of Salmonella typhimurium by scanning transmission electron microscopy. Proc Natl Acad Sci U S A 89, 4801–4805.[CrossRef]
    [Google Scholar]
  44. Sujatha, S. & Chatterji, D. ( 2000; ). Understanding protein–protein interactions by genetic suppression. J Genet 79, 125–129.[CrossRef]
    [Google Scholar]
  45. Suzuki, H., Yonekura, K. & Namba, K. ( 2004; ). Structure of the rotor of the bacterial flagellar motor revealed by electron cryomicroscopy and single-particle image analysis. J Mol Biol 337, 105–113.[CrossRef]
    [Google Scholar]
  46. Tang, H. & Blair, D. F. ( 1995; ). Regulated underexpression of the FliM protein of Escherichia coli and evidence for a location in the flagellar motor distinct from the MotA/MotB torque generators. J Bacteriol 177, 3485–3495.
    [Google Scholar]
  47. Tang, H., Billings, S., Wang, X., Sharp, L. & Blair, D. F. ( 1995; ). Regulated underexpression and overexpression of the FliN protein of Escherichia coli and evidence for an interaction between FliN and FliM in the flagellar motor. J Bacteriol 177, 3496–3503.
    [Google Scholar]
  48. Tang, H., Braun, T. F. & Blair, D. F. ( 1996; ). Motility protein complexes in the bacterial flagellar motor. J Mol Biol 261, 209–221.[CrossRef]
    [Google Scholar]
  49. Thomas, D. R., Morgan, D. G. & DeRosier, D. J. ( 1999; ). Rotational symmetry of the C ring and a mechanism for the flagellar rotary motor. Proc Natl Acad Sci U S A 96, 10134–10139.[CrossRef]
    [Google Scholar]
  50. Thomas, D., Morgan, D. G. & DeRosier, D. J. ( 2001; ). Structures of bacterial flagellar motors from two FliF–FliG gene fusion mutants. J Bacteriol 183, 6404–6412.[CrossRef]
    [Google Scholar]
  51. Thomas, D. R., Francis, N. R., Xu, C. & DeRosier, D. J. ( 2006; ). The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J Bacteriol 188, 7039–7048.[CrossRef]
    [Google Scholar]
  52. Togashi, F., Yamaguchi, S., Kihara, M., Aizawa, S.-I. & Macnab, R. M. ( 1997; ). An extreme clockwise switch bias mutation in fliG of Salmonella typhimurium and its suppression by slow-motile mutations in motA and motB. J Bacteriol 179, 2994–3003.
    [Google Scholar]
  53. Toker, A. S. & Macnab, R. M. ( 1997; ). Distinct regions of bacterial flagellar switch protein FliM interact with FliG, FliN and CheY. J Mol Biol 273, 623–634.[CrossRef]
    [Google Scholar]
  54. Toker, A. S., Kihara, M. & Macnab, R. M. ( 1996; ). Deletion analysis of the FliM flagellar switch protein of Salmonella typhimurium. J Bacteriol 178, 7069–7079.
    [Google Scholar]
  55. Yamaguchi, S., Aizawa, S., Kihara, M., Isomura, M., Jones, C. J. & Macnab, R. M. ( 1986a; ). Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium. J Bacteriol 168, 1172–1179.
    [Google Scholar]
  56. Yamaguchi, S., Fujita, H., Ishihara, A., Aizawa, S. & Macnab, R. M. ( 1986b; ). Subdivision of flagellar genes of Salmonella typhimurium into regions responsible for assembly, rotation, and switching. J Bacteriol 166, 187–193.
    [Google Scholar]
  57. Yolov, A. A. & Shabarova, Z. A. ( 1990; ). Constructing DNA by polymerase recombination. Nucleic Acids Res 18, 3983–3986.[CrossRef]
    [Google Scholar]
  58. Young, H. S., Dang, H., Lai, Y., DeRosier, D. J. & Khan, S. ( 2003; ). Variable symmetry in Salmonella typhimurium flagellar motors. Biophys J 84, 571–577.[CrossRef]
    [Google Scholar]
  59. Zhao, R., Schuster, S. C. & Khan, S. ( 1995; ). Structural effects of mutations in Salmonella typhimurium flagellar switch complex. J Mol Biol 251, 400–412.[CrossRef]
    [Google Scholar]
  60. Zhao, R., Amsler, C. D., Matsumura, P. & Khan, S. ( 1996a; ). FliG and FliM distribution in the Salmonella typhimurium cell and flagellar basal bodies. J Bacteriol 178, 258–265.
    [Google Scholar]
  61. Zhao, R., Pathak, N., Jaffe, H., Reese, T. S. & Khan, S. ( 1996b; ). FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body. J Mol Biol 261, 195–208.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/014597-0
Loading
/content/journal/micro/10.1099/mic.0.2007/014597-0
Loading

Data & Media loading...

Supplements

Analysis of the FliM/FliG motor protein interaction by two-hybrid mutation suppression analysis [PDF file](15 KB)

PDF

[PDF file](49 KB)

PDF

mutagenesis to isolate suppressors of mutations disrupting FliM/FliG interaction [PDF file](288 KB)

PDF

Mapping of suppressor mutations by multifragment cloning [PDF file](312 KB)

PDF

FliG model highlighting the close correspondence of FliM-binding domains determined by others and us [PDF file](566 KB)

PDF

[PDF file](116 KB)

PDF

[PDF file](163 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error