1887

Abstract

Carbon starvation is a significant stress encountered by the opportunistic fungal pathogen , and mutations in several pathways required to assimilate non-fermentable carbon sources attenuate virulence. These pathways – -oxidation, the glyoxylate cycle and gluconeogenesis – are compartmentalized in the fungal cell between the peroxisome, mitochondria and cytosol; thus, the cell must transport key intermediates between these organelles. Transport of acetyl-CoA, a particularly important intermediate of carbon metabolism, is catalysed by membrane-associated carnitine acetyltransferases (CATs). We report here the characterization of the three predicted CAT genes in , and . Strains lacking or were unable to grow on ethanol or acetate as sole carbon source; additionally, citrate was utilized poorly (Δ) or not at all (Δ) and the Δ mutant failed to grow on fatty acids as well. In contrast, deletion of had no observable phenotype. All three genes were upregulated in the presence of non-fermentable carbon sources and after macrophage phagocytosis. and were able to complement the corresponding Δ and Δ mutants. However, these mutants had no obvious attenuation in virulence in a mouse model of disseminated candidiasis, in contrast to other carbon metabolism mutants. These findings extend our understanding of nutrient stress and and the contribution of metabolic pathways to virulence in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/014555-0
2008-02-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/2/500.html?itemId=/content/journal/micro/10.1099/mic.0.2007/014555-0&mimeType=html&fmt=ahah

References

  1. Atomi, H., Ueda, M., Suzuki, J., Kamada, Y. & Tanaka, A. ( 1993; ). Presence of carnitine acetyltransferase in peroxisomes and in mitochondria of oleic acid-grown Saccharomyces cerevisiae. FEMS Microbiol Lett 112, 31–34.[CrossRef]
    [Google Scholar]
  2. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. & Struhl, K. (editors) ( 1993; ). Current Protocols in Molecular Biology. New York: Greene and Wiley-Interscience.
  3. Bain, J. M., Stubberfield, C. & Gow, N. A. R. ( 2001; ). Ura-status-dependent adhesion of Candida albicans mutants. FEMS Microbiol Lett 204, 323–328.[CrossRef]
    [Google Scholar]
  4. Barelle, C. J., Priest, C. L., MacCallum, D. M., Gow, N. A. R., Odds, F. C. & Brown, A. J. P. ( 2006; ). Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol 8, 961–971.[CrossRef]
    [Google Scholar]
  5. Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P. & Boeke, J. D. ( 1998; ). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132.[CrossRef]
    [Google Scholar]
  6. Brand, A., MacCallum, D. M., Brown, A. J. P., Gow, N. A. R. & Odds, F. C. ( 2004; ). Ectopic expression of URA3 can influence the virulence phenotypes and proteome of Candida albicans but can be overcome by targeted reintegration of URA3 at the RPS10 locus. Eukaryot Cell 3, 900–909.[CrossRef]
    [Google Scholar]
  7. Elgersma, Y., van Roermund, C. W., Wanders, R. J. & Tabak, H. F. ( 1995; ). Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. EMBO J 14, 3472–3479.
    [Google Scholar]
  8. Fonzi, W. A. & Irwin, M. Y. ( 1993; ). Isogenic strain construction and gene mapping in Candida albicans. Genetics 134, 717–728.
    [Google Scholar]
  9. Fradin, C., Kretschmar, M., Nichterlein, T., Gaillardin, C., d'Enfert, C. & Hube, B. ( 2003; ). Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol 47, 1523–1543.[CrossRef]
    [Google Scholar]
  10. Goldstein, A. L. & McCusker, J. H. ( 1999; ). Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15, 1541–1553.[CrossRef]
    [Google Scholar]
  11. Kaplan, R. S., Mayor, J. A., Kakhniashvili, D., Gremse, D. A., Wood, D. O. & Nelson, D. R. ( 1996; ). Deletion of the nuclear gene encoding the mitochondrial citrate transport protein from Saccharomyces cerevisiae. Biochem Biophys Res Commun 226, 657–662.[CrossRef]
    [Google Scholar]
  12. Kispal, G., Sumegi, B., Dietmeier, K., Bock, I., Gajdos, G., Tomcsanyi, T. & Sandor, A. ( 1993; ). Cloning and sequencing of a cDNA encoding Saccharomyces cerevisiae carnitine acetyltransferase. Use of the cDNA in gene disruption studies. J Biol Chem 268, 1824–1829.
    [Google Scholar]
  13. Lay, J., Henry, L. K., Clifford, J., Koltin, Y., Bulawa, C. E. & Becker, J. M. ( 1998; ). Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies. Infect Immun 66, 5301–5306.
    [Google Scholar]
  14. Lorenz, M. C. & Fink, G. R. ( 2001; ). The glyoxylate cycle is required for fungal virulence. Nature 412, 83–86.[CrossRef]
    [Google Scholar]
  15. Lorenz, M. C., Bender, J. A. & Fink, G. R. ( 2004; ). Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3, 1076–1087.[CrossRef]
    [Google Scholar]
  16. Mumberg, D., Muller, R. & Funk, M. ( 1995; ). Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119–122.[CrossRef]
    [Google Scholar]
  17. Petter, R., Chang, Y. C. & Kwon-Chung, K. J. ( 1997; ). A gene homologous to Saccharomyces cerevisiae SNF1 appears to be essential for the viability of Candida albicans. Infect Immun 65, 4909–4917.
    [Google Scholar]
  18. Piekarska, K., Mol, E., van den Berg, M., Hardy, G., van den Burg, J., van Roermund, C., MacCallum, D., Odds, F. & Distel, B. ( 2006; ). Peroxisomal fatty acid β-oxidation is not essential for virulence of Candida albicans. Eukaryot Cell 5, 1847–1856.[CrossRef]
    [Google Scholar]
  19. Prigneau, O., Porta, A. & Maresca, B. ( 2004; ). Candida albicans CTN gene family is induced during macrophage infection: homology, disruption and phenotypic analysis of CTN3 gene. Fungal Genet Biol 41, 783–793.[CrossRef]
    [Google Scholar]
  20. Ramírez, M. A. & Lorenz, M. C. ( 2007; ). Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes. Eukaryot Cell 6, 280–290.[CrossRef]
    [Google Scholar]
  21. Reuß, O., Vik, A., Kolter, R. & Morschhauser, J. ( 2004; ). The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341, 119–127.[CrossRef]
    [Google Scholar]
  22. Rubin-Bejerano, I., Fraser, I., Grisafi, P. & Fink, G. R. ( 2003; ). Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci U S A 100, 11007–11012.[CrossRef]
    [Google Scholar]
  23. Schmalix, W. & Bandlow, W. ( 1993; ). The ethanol-inducible YAT1 gene from yeast encodes a presumptive mitochondrial outer carnitine acetyltransferase. J Biol Chem 268, 27428–27439.
    [Google Scholar]
  24. Sexton, J. A., Brown, V. & Johnston, M. ( 2007; ). Regulation of sugar transport and metabolism by the Candida albicans Rgt1 transcriptional repressor. Yeast 24, 847–860.[CrossRef]
    [Google Scholar]
  25. Swiegers, J. H., Dippenaar, N., Pretorius, I. S. & Bauer, F. F. ( 2001; ). Carnitine-dependent metabolic activities in Saccharomyces cerevisiae: three carnitine acetyltransferases are essential in a carnitine-dependent strain. Yeast 18, 585–595.[CrossRef]
    [Google Scholar]
  26. van Roermund, C. W., Elgersma, Y., Singh, N., Wanders, R. J. & Tabak, H. F. ( 1995; ). The membrane of peroxisomes in Saccharomyces cerevisiae is impermeable to NAD(H) and acetyl-CoA under in vivo conditions. EMBO J 14, 3480–3486.
    [Google Scholar]
  27. Wach, A., Brachat, A., Pohlmann, R. & Philippsen, P. ( 1994; ). New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793–1808.[CrossRef]
    [Google Scholar]
  28. Wenzel, R. P. ( 1995; ). Nosocomial candidemia: risk factors and attributable mortality. Clin Infect Dis 20, 1531–1534.[CrossRef]
    [Google Scholar]
  29. Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J. D. & other authors ( 1999; ). Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906.[CrossRef]
    [Google Scholar]
  30. Wisplinghoff, H., Bischoff, T., Tallent, S. M., Seifert, H., Wenzel, R. P. & Edmond, M. B. ( 2004; ). Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39, 309–317.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/014555-0
Loading
/content/journal/micro/10.1099/mic.0.2007/014555-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error