1887

Abstract

The gene cluster is essential for acyclic terpene utilization (Atu) in . The biochemical functions of most Atu proteins have not been experimentally verified; exceptions are AtuC/AtuF, which constitute the two subunits of geranyl-CoA carboxylase, the key enzyme of the Atu pathway. In this study we investigated the biochemical function of AtuD and of the PA1535 gene product, a protein related to AtuD in amino acid sequence. 2D gel electrophoresis showed that AtuD and the PA1535 protein were specifically expressed in cells grown on acyclic terpenes but were absent in isovalerate- or succinate-grown cells. Mutant analysis indicated that AtuD but not the product of PA1535 is essential for acyclic terpene utilization. AtuD and PA1535 gene product were expressed in recombinant and purified to homogeneity. Purified AtuD showed citronellyl-CoA dehydrogenase activity ( 850 mU mg) and high affinity to citronellyl-CoA ( 1.6 μM). AtuD was inactive with octanoyl-CoA, 5-methylhex-4-enoyl-CoA or isovaleryl-CoA. Purified PA1535 gene product revealed high citronellyl-CoA dehydrogenase activity ( 2450 mU mg) but had significantly lower affinity than AtuD to citronellyl-CoA ( 18 μM). Purified PA1535 protein additionally utilized octanoyl-CoA as substrate ( , 610 mU mg; 130 μM). To our knowledge AtuD is the first acyl-CoA dehydrogenase with a documented substrate specificity for terpenoid molecule structure and is essential for a functional Atu pathway. Potential other terpenoid-CoA dehydrogenases were found in the genomes of , and but were absent in non-acyclic terpene-utilizing bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/014530-0
2008-03-01
2020-07-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/789.html?itemId=/content/journal/micro/10.1099/mic.0.2007/014530-0&mimeType=html&fmt=ahah

References

  1. Aguilar J. A., Zavala A. N., Diaz-Perez C., Cervantes C., Diaz-Perez A. L., Campos-Garcia J.. 2006; The atu and liu clusters are involved in the catabolic pathways for acyclic monoterpenes and leucine in Pseudomonas aeruginosa . Appl Environ Microbiol72:2070–2079
    [Google Scholar]
  2. Becker D. F., Fuchs J. A., Banfield D. K., Funk W. D., MacGillivray R. T., Stankovich M. T.. 1993; Characterization of wild-type and an active-site mutant in Escherichia coli of short-chain acyl-CoA dehydrogenase from Megasphaera elsdenii . Biochemistry32:10736–10742
    [Google Scholar]
  3. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254
    [Google Scholar]
  4. Cantwell S. G., Lau E. P., Watt D. S., Fall R. R.. 1978; Biodegradation of acyclic isoprenoids by Pseudomonas species. J Bacteriol135:324–333
    [Google Scholar]
  5. Conrad R. S., Massey L. K., Sokatch J. R.. 1974; d- and l-isoleucine metabolism and regulation of their pathways in Pseudomonas putida . J Bacteriol118:103–111
    [Google Scholar]
  6. Däschner K., Couee I., Binder S.. 2001; The mitochondrial isovaleryl-coenzyme A dehydrogenase of Arabidopsis oxidizes intermediates of leucine and valine catabolism. Plant Physiol126:601–612
    [Google Scholar]
  7. Djordjevic S., Dong Y., Paschke R., Frerman F. E., Strauss A. W., Kim J. J.. 1994; Identification of the catalytic base in long chain acyl-CoA dehydrogenase. Biochemistry33:4258–4264
    [Google Scholar]
  8. Dym O., Eisenberg D.. 2001; Sequence–structure analysis of FAD-containing proteins. Protein Sci10:1712–1728
    [Google Scholar]
  9. Engel P. C.. 1981; Butyryl-CoA dehydrogenase from Megasphera elsdenii . Methods Enzymol71:495–508
    [Google Scholar]
  10. Engel P. C., Massey V.. 1971; The purification and properties of butyryl-coenzyme A dehydrogenase from Peptostreptococcus elsdenii . Biochem J125:879–887
    [Google Scholar]
  11. Förster-Fromme K., Jendrossek D.. 2006; Identification and characterization of the acyclic terpene utilization gene cluster of Pseudomonas citronellolis . FEMS Microbiol Lett264:220–225
    [Google Scholar]
  12. Förster-Fromme K., Höschle B., Mack C., Bott M., Armbruster W., Jendrossek D.. 2006; Identification of genes and proteins necessary for catabolism of acyclic terpenes and leucine/isovalerate in Pseudomonas aeruginosa . Appl Environ Microbiol72:4819–4828
    [Google Scholar]
  13. Harder J., Probian C.. 1995; Microbial degradation of monoterpenes in the absence of molecular oxygen. Appl Environ Microbiol61:3804–3808
    [Google Scholar]
  14. Heyen U., Harder J.. 2000; Geranic acid formation, an initial reaction of anaerobic monoterpene metabolism in denitrifying Alcaligenes defragrans . Appl Environ Microbiol66:3004–3009
    [Google Scholar]
  15. Hierro I., Valero A., Perez P., Gonzalez P., Cabo M. M., Montilla M. P., Navarro M. C.. 2004; Action of different monoterpenic compounds against Anisakis simplex s.l. L3 larvae. Phytomedicine11:77–82
    [Google Scholar]
  16. Holtzapple E., Schmidt-Dannert C.. 2007; Biosynthesis of isoprenoid wax ester in Marinobacter hydrocarbonoclasticus DSM 8798: identification and characterization of isoprenoid coenzyme A synthetase and wax ester synthases. J Bacteriol189:3804–3812
    [Google Scholar]
  17. Höschle B., Jendrossek D.. 2005; Utilization of geraniol is dependent on molybdenum in Pseudomonas aeruginosa : evidence for different metabolic routes for oxidation of geraniol and citronellol. Microbiology151:2277–2283
    [Google Scholar]
  18. Höschle B., Gnau V., Jendrossek D.. 2005; Methylcrotonyl-CoA carboxylase and geranyl-CoA carboxylase are involved in leucine/isovalerate utilisation (Liu) and in acyclic terpenes utilisation (Atu) and are encoded by liuB/liuD and atuC/atuF in Pseudomonas aeruginosa . Microbiology151:3649–3656
    [Google Scholar]
  19. Hylemon P. B., Harder J.. 1998; Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems. FEMS Microbiol Rev22:475–488
    [Google Scholar]
  20. Ikeda Y., Tanaka K.. 1983; Purification and characterization of isovaleryl coenzyme A dehydrogenase from rat liver mitochondria. J Biol Chem258:1077–1085
    [Google Scholar]
  21. Jacobs M. A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C.. other authors 2003; Comprehensive transposon mutant library of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A100:14339–14344
    [Google Scholar]
  22. Massey L. K., Conrad R. S., Sokatch J. R.. 1974; Regulation of leucine catabolism in Pseudomonas putida . J Bacteriol118:112–120
    [Google Scholar]
  23. Massey L. K., Sokatch J. R., Conrad R. S.. 1976; Branched-chain amino acid catabolism in bacteria. Bacteriol Rev40:42–54
    [Google Scholar]
  24. Matsubara Y., Indo Y., Naito E., Ozasa H., Glassberg R., Vockley J., Ikeda Y., Kraus J., Tanaka K.. 1989; Molecular cloning and nucleotide sequence of cDNAs encoding the precursors of rat long chain acyl-coenzyme A, short chain acyl-coenzyme A, and isovaleryl-coenzyme A dehydrogenases. Sequence homology of four enzymes of the acyl-CoA dehydrogenase family. J Biol Chem264:16321–16331
    [Google Scholar]
  25. Prakash O., Kumari K., Lal R.. 2007; Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. Int J Syst Evol Microbiol57:527–531
    [Google Scholar]
  26. Schlegel H. G., Kaltwasser H., Gottschalk G.. 1961; A submersion method for culture of hydrogen-oxidizing bacteria: growth physiological studies. Arch Mikrobiol38:209–222
    [Google Scholar]
  27. Seubert W.. 1960; Degradation of isoprenoid compounds by microorganisms. I. Isolation and characterization of an isoprenoid-degrading bacterium, Pseudomonas citronellolis n. sp. J Bacteriol79:426–434
    [Google Scholar]
  28. Seubert W., Fass E.. 1964a; Studies on the bacterial degradation of isoprenoids.V. The mechanism of isoprenoid degradation. Biochem Z341:35–44
    [Google Scholar]
  29. Seubert W., Fass E.. 1964b; Studies on the bacterial degradation of isoprenoids. IV. The purification and properties of β -isohexenylglutaconyl-CoA-hydratase and β -hydroxy- β -isohexenylglutaryl-CoA-lyase. Biochem Z341:23–34
    [Google Scholar]
  30. Seubert W., Remberger U.. 1963; Studies on the bacterial degradation of isoprenoids. II. The role of carbon dioxide. Biochem Z338:245–264
    [Google Scholar]
  31. Seubert W., Fass E., Remberger U.. 1963; Studies on the bacterial degradation of isoprenoids. III. Purification and properties of geranyl carboxylase. Biochem Z338:265–275
    [Google Scholar]
  32. Thorpe C., Kim J. J.. 1995; Structure and mechanism of action of the acyl-CoA dehydrogenases. FASEB J9:718–725
    [Google Scholar]
  33. Windgassen M., Urban A., Jaeger K. E.. 2000; Rapid gene inactivation in Pseudomonas aeruginosa . FEMS Microbiol Lett193:201–205
    [Google Scholar]
  34. Yanisch-Perron C., Vieira J., Messing J.. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/014530-0
Loading
/content/journal/micro/10.1099/mic.0.2007/014530-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error