Virulence determinants from a cystic fibrosis isolate of include isocitrate lyase Free

Abstract

Chronic lung infections caused by are the leading cause of morbidity and mortality for cystic fibrosis (CF) patients. Adaptation of to the CF lung results in the loss of acute virulence determinants and appears to activate chronic virulence strategies in this pathogen. In order to identify such strategies, a random transposon mutagenesis was performed and 18 genes that were required for optimal infection of alfalfa seedlings by FRD1, a CF isolate of , were recognized. The largest subset of genes (seven of the 18), were associated with central carbon metabolism, including the gene that encodes isocitrate lyase (ICL), . Because FRD1 is avirulent in animal infection models, we constructed an ICL mutant in strain PAO1 in order to assess the requirement of ICL in mammalian infection. The PAO1 ICL mutant was less virulent in the rat lung infection model, indicating that ICL is required for the pathogenesis of in mammals. Furthermore, FRD1 showed increased ICL activity and expression of an  : :  fusion compared to PAO1. We suggest that upregulation of ICL occurred during adaptation of FRD1 to the CF lung and that some of the novel virulence mechanisms employed by FRD1 to infect alfalfa seedlings may be the same mechanisms relies upon to persist within human niches.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/014506-0
2008-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/6/1616.html?itemId=/content/journal/micro/10.1099/mic.0.2007/014506-0&mimeType=html&fmt=ahah

References

  1. Barth A. L., Pitt T. L. 1996; The high amino-acid content of sputum from cystic fibrosis patients promotes growth of auxotrophic Pseudomonas aeruginosa . J Med Microbiol 45:110–119
    [Google Scholar]
  2. Berk R. S., Brown D., Coutinho I., Meyers D. 1987; In vivo studies with two phospholipase C fractions from Pseudomonas aeruginosa . Infect Immun 55:1728–1730
    [Google Scholar]
  3. Bernier S. P., Silo-Suh L., Woods D. E., Ohman D. E., Sokol P. A. 2003; Comparative analysis of plant and animal models for characterization of Burkholderia cepacia virulence. Infect Immun 71:5306–5313
    [Google Scholar]
  4. Bhagwat A., Gross K., Smith A., Scott A. 2004 Membrane-derived Oligosaccharides of Salmonella Serovar Typhimurium. Abstract American Society for Microbiology Annual Meeting; p 107
    [Google Scholar]
  5. Blackwood L. L., Stone R. M., Iglewski B. H., Pennington J. E. 1983; Evaluation of Pseudomonas aeruginosa exotoxin A and elastase as virulence factors in acute lung infection. Infect Immun 39:198–201
    [Google Scholar]
  6. Bredenbruch F., Geffers R., Nimtz M., Buer J., Haussler S. 2006; The Pseudomonas aeruginosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol 8:1318–1329
    [Google Scholar]
  7. Cash H. A., Woods D. E., McCullough B., Johanson W. G., Bass J. A. 1979; A rat model of chronic respiratory infection with Pseudomonas aeruginosa . Am Rev Respir Dis 119:453–459
    [Google Scholar]
  8. Coin D., Louis D., Bernillon J., Guinand M., Wallach J. 1997; LasA, alkaline protease and elastase in clinical strains of Pseudomonas aeruginosa : quantification by immunochemical methods. FEMS Immunol Med Microbiol 18:175–184
    [Google Scholar]
  9. Costerton W., Veeh R., Shirtliff M., Pasmore M., Post C., Ehrlich G. 2003; The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112:1466–1477
    [Google Scholar]
  10. Cox C. D. 1982; Effect of pyochelin on the virulence of Pseudomonas aeruginosa . Infect Immun 36:17–23
    [Google Scholar]
  11. Dacheux D., Attree I., Toussaint B. 2001; Expression of ExsA in trans confers type III secretion system-dependent cytotoxicity on noncytotoxic Pseudomonas aeruginosa cystic fibrosis isolates. Infect Immun 69:538–542
    [Google Scholar]
  12. Davis R. W., Botstein D., Roth J. R. 1980 Advanced Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. De Kievit T. R., Gillis R., Marx S., Brown C., Iglewski B. H. 2001; Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67:1865–1873
    [Google Scholar]
  14. DeMaria T. F., Apicella M. A., Nichols W. A., Leake E. R. 1997; Evaluation of the virulence of nontypeable Haemophilus influenzae lipooligosaccharide htrB and rfaD mutants in the chinchilla model of otitis media. Infect Immun 65:4431–4435
    [Google Scholar]
  15. Diaz-Perez A. L., Roman-Doval C., Diaz-Perez C., Cervantes C., Sosa-Aquirre C. R., Lopez-Meza J. E., Campos-Garcia J. 2007; Identification of the aceA gene encoding isocitrate lyase required for the growth of Pseudomonas aeruginosa on acetate, acyclic terpenes and leucine. FEMS Microbiol Lett 269:309–316
    [Google Scholar]
  16. Diggle S. P., Winzer K., Chhabra S. R., Worrall K. E., Camara M., Williams P. 2003; The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl -dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43
    [Google Scholar]
  17. Diggle S. P., Cornelis P., Williams P., Camara M. 2006; 4-Quinolone signalling in Pseudomonas aeruginosa : old molecules, new perspectives. Int J Med Microbiol 296:83–91
    [Google Scholar]
  18. Ehrlich G. D., Hu F. Z., Shen K., Stoodley P., Post J. C. 2005; Bacterial plurality as a general mechanism driving persistence in chronic infections. Clin Orthop Relat Res20–24
    [Google Scholar]
  19. Elsheikh L. E., Kronevi T., Wretlind B., Abaas S., Iglewski B. H. 1987; Assessment of elastase as a Pseudomonas aeruginosa virulence factor in experimental lung infection in mink. Vet Microbiol 13:281–289
    [Google Scholar]
  20. Essar D. W., Eberly L., Hadero A., Crawford I. P. 1990; Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa : interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900
    [Google Scholar]
  21. Fang F. C., Libby S. J., Castor M. E., Fung A. M. 2005; Isocitrate lyase (AceA) is required for Salmonella persistence but not for acute lethal infection in mice. Infect Immun 73:2547–2549
    [Google Scholar]
  22. Fiedler W., Rotering H. 1988; Properties of Escherichia coli mutants lacking membrane-derived oligosaccharides. J Biol Chem 263:14684–14689
    [Google Scholar]
  23. Fux C. A., Costerton J. W., Stewart P. S., Stoodley P. 2005; Survival strategies of infectious biofilms. Trends Microbiol 13:34–40
    [Google Scholar]
  24. Geiger O., Russo F. D., Silhavy T. J., Kennedy E. P. 1992; Membrane-derived oligosaccharides affect porin osmoregulation only in media of low ionic strength. J Bacteriol 174:1410–1413
    [Google Scholar]
  25. Grimek T. L., Escalante-Semerena J. C. 2004; The acnD genes of Shewenella oneidensis and Vibrio cholerae encode a new Fe/S-dependent 2-methylcitrate dehydratase enzyme that requires prpF function in vivo . J Bacteriol 186:454–462
    [Google Scholar]
  26. Guina T., Purvine S. O., Yi E. C., Eng J., Goodlett D. R., Aebersold R., Miller S. I. 2003; Quantitative proteomic analysis indicates increased synthesis of a quinolone by Pseudomonas aeruginosa isolates from cystic fibrosis airways. Proc Natl Acad Sci U S A 100:2771–2776
    [Google Scholar]
  27. Hatch R. A., Schiller N. L. 1998; Alginate lyase promotes diffusion of aminoglycosides through the extracellular polysaccharide of mucoid Pseudomonas aeruginosa . Antimicrob Agents Chemother 42:974–977
    [Google Scholar]
  28. Head N. E., Yu H. 2004; Cross-sectional analysis of clinical and environmental isolates of Pseudomonas aeruginosa : biofilm formation, virulence, and genome diversity. Infect Immun 72:133–144
    [Google Scholar]
  29. Henry R. L., Mellis C. M., Petrovic L. 1992; Mucoid Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr Pulmonol 12:158–161
    [Google Scholar]
  30. Holloway B. W., Krishnapillai V., Morgan A. F. 1979; Chromosomal genetics of Pseudomonas . Microbiol Rev 43:73–102
    [Google Scholar]
  31. Honer zu Bentrup K., Russell D. G. 2001; Mycobacterial persistence: adaptation to a changing environment. Trends Microbiol 9:597–605
    [Google Scholar]
  32. Honer Zu Bentrup K., Miczak A., Swenson D. L., Russell D. G. 1999; Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis . J Bacteriol 181:7161–7167
    [Google Scholar]
  33. Hong P. C., Tsolis R. M., Ficht T. A. 2000; Identification of genes required for chronic persistence of Brucella abortus in mice. Infect Immun 68:4102–4107
    [Google Scholar]
  34. Jones B. D., Nichols W. A., Gibson B. W., Sunshine M. G., Apicella M. A. 1997; Study of the role of the htrB gene in Salmonella typhimurium virulence. Infect Immun 65:4778–4783
    [Google Scholar]
  35. Knutson C. A., Jeanes A. 1968; A new modification of the carbazole analysis: application to heteropolysaccharides. Anal Biochem 24:470–481
    [Google Scholar]
  36. Lau G. W., Ran H., Kong F., Hassett D. J., Mavrodi D. 2004; Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect Immun 72:4275–4278
    [Google Scholar]
  37. Lee B., Haagensen A. J., Ciofu O., Anderson J. B., Hoiby N., Molin S. 2005; Heterogeneity of biofilms formed by nonmucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. J Clin Microbiol 43:5247–5255
    [Google Scholar]
  38. Luzar M. A., Montie T. C. 1985; Avirulence and altered physiological properties of cystic fibrosis strains of Pseudomonas aeruginosa . Infect Immun 50:572–576
    [Google Scholar]
  39. Mahenthiralingam E., Campbell M. E., Foster J., Lam J. S., Speert D. P. 1996; Random amplified polymorphic DNA typing of Pseudomonas aeruginosa isolates recovered from patients with cystic fibrosis. J Clin Microbiol 34:1129–1135
    [Google Scholar]
  40. McKinney J. D., Honer zu Bentrup K., Munoz-Elias E. J., Miczak A., Chen B., Chan W. T., Swenson D., Sacchettini J. C., Jacobs W. R. Jr, Russell D. G. 2000; Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738
    [Google Scholar]
  41. Meyer J. M., Neely A., Stintzi A., Georges C., Holder I. A. 1996; Pyoverdin is essential for virulence of Pseudomonas aeruginosa . Infect Immun 64:518–523
    [Google Scholar]
  42. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Nicas T. I., Iglewski B. H. 1985; The contribution of exoproducts to virulence of Pseudomonas aeruginosa . Can J Microbiol 31:387–392
    [Google Scholar]
  44. O'Toole G. A., Kolter R. 1998; Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304
    [Google Scholar]
  45. Ohman D. E., Chakrabarty A. M. 1981; Genetic mapping of chromosomal determinants for the production of the exopolysaccharide alginate in a Pseudomonas aeruginosa cystic fibrosis isolate. Infect Immun 33:142–148
    [Google Scholar]
  46. Oliver A. M., Weir D. M. 1985; The effect of Pseudomonas alginate on rat alveolar macrophage phagocytosis and bacterial opsonization. Clin Exp Immunol 59:190–196
    [Google Scholar]
  47. Ostroff R. M., Wretlind B., Vasil M. L. 1989a; Mutations in the hemolytic-phospholipase C operon result in decreased virulence of Pseudomonas aeruginosa PAO1 grown under phosphate-limiting conditions. Infect Immun 57:1369–1373
    [Google Scholar]
  48. Ostroff R. M., Wretlind B., Vasil M. L. 1989b; Mutations in the hemolytic-phospholipase C operon result in decreased virulence of Pseudomonas aeruginosa PAO1 grown under phosphate-limiting conditions. Infect Immun 57:1369–1373
    [Google Scholar]
  49. Page F., Altabe S., Hugouvieux-Cotte-Pattat N., Lacroix J. M., Robert-Baudouy J., Bohin J. P. 2001; Osmoregulated periplasmic glucan synthesis is required for Erwinia chrysanthemi pathogenicity. J Bacteriol 183:3134–3141
    [Google Scholar]
  50. Palmer K. L., Mashburn L. M., Singh P. K., Whiteley M. 2005; Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 187:5267–5277
    [Google Scholar]
  51. Pedersen S. S., Kharazmi A., Espersen F., Hoiby N. 1990; Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect Immun 58:3363–3368
    [Google Scholar]
  52. Pham T. H., Webb J. S., Rehm B. H. 2004; The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–3413
    [Google Scholar]
  53. Powell B. S., Court D. L., Inada T., Nakamura Y., Michotey V., Cui X., Reizer A., Saier M. H. Jr, Reizer J. 1995; Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli . Enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem 270:4822–4839
    [Google Scholar]
  54. Pruss B. M., Nelms J. M., Park C., Wolfe A. J. 1994; Mutations in NADH : ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. J Bacteriol 176:2143–2150
    [Google Scholar]
  55. Rahme L. G., Stevens E. J., Wolfort S. F., Shao J., Tompkins R. G., Ausubel F. M. 1995; Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902
    [Google Scholar]
  56. Schweizer H. D. 1993; Small broad-host-range gentamicin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15:831–833
    [Google Scholar]
  57. Silo-Suh L., Suh S. J., Sokol P. A., Ohman D. E. 2002; A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis. Proc Natl Acad Sci U S A 99:15699–15704
    [Google Scholar]
  58. Silo-Suh L., Suh S. J., Phibbs P. V., Ohman D. E. 2005; Adaptations of Pseudomonas aeruginosa to the cystic fibrosis lung environment can include deregulation of zwf , encoding glucose-6-phosphate dehydrogenase. J Bacteriol 187:7561–7568
    [Google Scholar]
  59. Simpson J. A., Smith S. E., Dean R. T. 1989; Scavenging by alginate of free radicals released by macrophages. Free Radic Biol Med 6:347–353
    [Google Scholar]
  60. Smith E. E., Buckley D. G., Wu Z., Saenphimmachak C., Hoffman L. R., D'Argenio D. A., Miller S. I., Ramsey B. W., Speert D. P. other authors 2006; Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103:8487–8492
    [Google Scholar]
  61. Son M. S., Matthews W. J. Jr, Kang Y., Nguyen D. T., Hoang T. T. 2007; In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect Immun 75:5313–5324
    [Google Scholar]
  62. Struelens M. J., Schwam V., Deplano A., Baran D. 1993; Genome macrorestriction analysis of diversity and variability of Pseudomonas aeruginosa strains infecting cystic fibrosis patients. J Clin Microbiol 31:2320–2326
    [Google Scholar]
  63. Suarez A., Guttler A., Stratz M., Staendner L. H., Timmis K. N., Guzman C. A. 1997; Green fluorescent protein-based reporter systems for genetic analysis of bacteria including monocopy applications. Gene 196:69–74
    [Google Scholar]
  64. Suh S. J., Silo-Suh L., Woods D. E., Hassett D. J., West S. E., Ohman D. E. 1999; Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa . J Bacteriol 181:3890–3897
    [Google Scholar]
  65. Suh S. J., Silo-Suh L., Ohman D. E. 2004; Development of tools for the genetic manipulation of Pseudomonas aeruginosa . J Microbiol Methods 58:203–212
    [Google Scholar]
  66. Tamber S., Ochs M. M., Hancock R. E. 2006; Role of the novel OprD family of porins in nutrient uptake in Pseudomonas aeruginosa . J Bacteriol 188:45–54
    [Google Scholar]
  67. Werner E., Roe F., Bugnicourt A., Franklin M. J., Heydorn A., Molin S., Pitts B., Stewart P. S. 2004; Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70:6188–6196
    [Google Scholar]
  68. Wiener-Kronish J. P., Sakuma T., Kudoh I., Pittet J. F., Frank D. W., Dobbs L., Vasil M. L., Mattay M. A. 1993; Alveolar epithelial injury and pleural empyema in acute P. aeruginosa pneumonia in anesthetized rabbits. J Appl Physiol 75:1661–1669
    [Google Scholar]
  69. Wilderman P. J., Vasil A. I., Johnson Z., Vasil M. L. 2001; Genetic and biochemical analyses of a eukaryotic-like phospholipase D of Pseudomonas aeruginosa suggest horizontal acquisition and a role for persistence in a chronic pulmonary infection model. Mol Microbiol 39:291–303
    [Google Scholar]
  70. Woods D. E., Schaffer M. S., Rabin H. R., Campbell G. D., Sokol P. A. 1986; Phenotypic comparison of Pseudomonas aeruginosa strains isolated from a variety of clinical sites. J Clin Microbiol 24:260–264
    [Google Scholar]
  71. Worlitzsch D., Tarran R., Ulrich M., Schwab U., Cekici A., Meyer K. C., Birrer P., Bellon G., Berger J. other authors 2002; Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109:317–325
    [Google Scholar]
  72. Young D., Hussell T., Dougan G. 2002; Chronic bacterial infections: living with unwanted guests. Nat Immunol 3:1026–1032
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/014506-0
Loading
/content/journal/micro/10.1099/mic.0.2007/014506-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed