1887

Abstract

The genome contains 11 serine/threonine kinase genes, and the products of two of these, PknA and PknB, are key components of a signal transduction pathway that regulates cell division and/or morphology. Previously, we have shown that one substrate of these kinases is Wag31, a homologue of the cell division protein DivIVA that is present, but not known to be phosphorylated, in other Gram-positive bacteria. Here, we investigate the localization and function of Wag31 and its phosphorylation. We demonstrate that Wag31 is localized to the cell poles. We further show that is an essential gene and that depletion of its product causes a dramatic morphological change in which one end of the cell becomes round rather than rod-shaped. This abnormal morphology appears to be caused by a defect in polar peptidoglycan synthesis. Finally, expression of in the conditional mutant of altered the growth rate in a manner that depended on the phospho-acceptor residue encoded by the allele being expressed. Taken together, these results indicate that Wag31 regulates cell shape and cell wall synthesis in through a molecular mechanism by which the activity of Wag31 can be modulated in response to environmental signals.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/014076-0
2008-03-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/725.html?itemId=/content/journal/micro/10.1099/mic.0.2007/014076-0&mimeType=html&fmt=ahah

References

  1. Av-Gay, Y. & Everett, M. ( 2000; ). The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol 8, 238–244.[CrossRef]
    [Google Scholar]
  2. Blokpoel, M. C., Murphy, H. N., O'Toole, R., Wiles, S., Runn, E. S., Stewart, G. R., Young, D. B. & Robertson, B. D. ( 2005; ). Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Res 33, e22 [CrossRef]
    [Google Scholar]
  3. Cha, J. H. & Stewart, G. C. ( 1997; ). The divIVA minicell locus of Bacillus subtilis. J Bacteriol 179, 1671–1683.
    [Google Scholar]
  4. Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V., Eiglmeier, K., Gas, S. & other authors ( 1998; ). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544.[CrossRef]
    [Google Scholar]
  5. Daniel, R. A. & Errington, J. ( 2003; ). Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113, 767–776.[CrossRef]
    [Google Scholar]
  6. Donachie, W. D. & Robinson, A. C. ( 1987; ). Cell division: parameter values and the process. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 1578–1593. Edited by F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter & H. E. Umbarger. Washington, DC: American Society for Microbiology.
  7. Durocher, D., Taylor, I. A., Sarbassova, D., Haire, L. F., Westcott, S. L., Jackson, S. P., Smerdon, S. J. & Yaffe, M. B. ( 2000; ). The molecular basis of FHA domain : phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol Cell 6, 1169–1182.[CrossRef]
    [Google Scholar]
  8. Edwards, D. H. & Errington, J. ( 1997; ). The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol Microbiol 24, 905–915.[CrossRef]
    [Google Scholar]
  9. Flardh, K. ( 2003; ). Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Mol Microbiol 49, 1523–1536.[CrossRef]
    [Google Scholar]
  10. Flynn, J. L. & Ernst, J. D. ( 2000; ). Immune responses in tuberculosis. Curr Opin Immunol 12, 432–436.[CrossRef]
    [Google Scholar]
  11. Henriques, A. O., Glaser, P., Piggot, P. J. & Moran, C. P., Jr ( 1998; ). Control of cell shape and elongation by the rodA gene in Bacillus subtilis. Mol Microbiol 28, 235–247.[CrossRef]
    [Google Scholar]
  12. Hermans, P. W., Abebe, F., Kuteyi, V. I., Kolk, A. H., Thole, J. E. & Harboe, M. ( 1995; ). Molecular and immunological characterization of the highly conserved antigen 84 from Mycobacterium tuberculosis and Mycobacterium leprae. Infect Immun 63, 954–960.
    [Google Scholar]
  13. Hess, J., Miko, D., Catic, A., Lehmensiek, V., Russell, D. G. & Kaufmann, S. H. ( 1998; ). Mycobacterium bovis bacille Calmette-Guerin strains secreting listeriolysin of Listeria monocytogenes. Proc Natl Acad Sci U S A 95, 5299–5304.[CrossRef]
    [Google Scholar]
  14. Kang, C. M., Abbott, D. W., Park, S. T., Dascher, C. C., Cantley, L. C. & Husson, R. N. ( 2005; ). The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes Dev 19, 1692–1704.[CrossRef]
    [Google Scholar]
  15. Lee, M. H., Pascopella, L., Jacobs, W. R., Jr & Hatfull, G. F. ( 1991; ). Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guerin. Proc Natl Acad Sci U S A 88, 3111–3115.[CrossRef]
    [Google Scholar]
  16. Leonard, C. J., Aravind, L. & Koonin, E. V. ( 1998; ). Novel families of putative protein kinases in bacteria and archaea: evolution of the “eukaryotic” protein kinase superfamily. Genome Res 8, 1038–1047.
    [Google Scholar]
  17. Magasanik, B. ( 1995; ). Historical Perspective. In Two Component Signal Transduction, pp. 1–5. Edited by J. Hoch & T. Silhavy. Washington, DC: American Society for Microbiology.
  18. Marston, A. L. & Errington, J. ( 1999; ). Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol Microbiol 33, 84–96.[CrossRef]
    [Google Scholar]
  19. Marston, A. L., Thomaides, H. B., Edwards, D. H., Sharpe, M. E. & Errington, J. ( 1998; ). Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev 12, 3419–3430.[CrossRef]
    [Google Scholar]
  20. Massidda, O., Anderluzzi, D., Friedli, L. & Feger, G. ( 1998; ). Unconventional organization of the division and cell wall gene cluster of Streptococcus pneumoniae. Microbiology 144, 3069–3078.[CrossRef]
    [Google Scholar]
  21. Parish, T., Mahenthiralingam, E., Draper, P., Davis, E. O. & Colston, M. J. ( 1997; ). Regulation of the inducible acetamidase gene of Mycobacterium smegmatis. Microbiology 143, 2267–2276.[CrossRef]
    [Google Scholar]
  22. Pashley, C. A. & Parish, T. ( 2003; ). Efficient switching of mycobacteriophage L5-based integrating plasmids in Mycobacterium tuberculosis. FEMS Microbiol Lett 229, 211–215.[CrossRef]
    [Google Scholar]
  23. Pelicic, V., Jackson, M., Reyrat, J. M., Jacobs, W. R., Jr, Gicquel, B. & Guilhot, C. ( 1997; ). Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 94, 10955–10960.[CrossRef]
    [Google Scholar]
  24. Pucci, M. J., Thanassi, J. A., Discotto, L. F., Kessler, R. E. & Dougherty, T. J. ( 1997; ). Identification and characterization of cell wall–cell division gene clusters in pathogenic Gram-positive cocci. J Bacteriol 179, 5632–5635.
    [Google Scholar]
  25. Raman, S., Song, T., Puyang, X., Bardarov, S., Jacobs, W. R., Jr & Husson, R. N. ( 2001; ). The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis. J Bacteriol 183, 6119–6125.[CrossRef]
    [Google Scholar]
  26. Ramirez-Arcos, S., Liao, M., Marthaler, S., Rigden, M. & Dillon, J. A. ( 2005; ). Enterococcus faecalis divIVA: an essential gene involved in cell division, cell growth and chromosome segregation. Microbiology 151, 1381–1393.[CrossRef]
    [Google Scholar]
  27. Ramos, A., Honrubia, M. P., Valbuena, N., Vaquera, J., Mateos, L. M. & Gil, J. A. ( 2003; ). Involvement of DivIVA in the morphology of the rod-shaped actinomycete Brevibacterium lactofermentum. Microbiology 149, 3531–3542.[CrossRef]
    [Google Scholar]
  28. Rodriguez, M. C. & de Pedro, M. A. ( 1990; ). Initiation of growth in pbpAts and rodAts mutants of Escherichia coli. FEMS Microbiol Lett 60, 235–239.
    [Google Scholar]
  29. Sassetti, C. M., Boyd, D. H. & Rubin, E. J. ( 2003; ). Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48, 77–84.[CrossRef]
    [Google Scholar]
  30. Thibessard, A., Fernandez, A., Gintz, B., Leblond-Bourget, N. & Decaris, B. ( 2002; ). Effects of rodA and pbp2b disruption on cell morphology and oxidative stress response of Streptococcus thermophilus CNRZ368. J Bacteriol 184, 2821–2826.[CrossRef]
    [Google Scholar]
  31. Thomaides, H. B., Freeman, M., El Karoui, M. & Errington, J. ( 2001; ). Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev 15, 1662–1673.[CrossRef]
    [Google Scholar]
  32. Wayne, L. G. & Hayes, L. G. ( 1996; ). An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64, 2062–2069.
    [Google Scholar]
  33. World Health Organization ( 2007; ). Tuberculosis. http://www.who.int/mediacentre/factsheets/fs104/en/
  34. Yura, T., Mori, H., Nagai, H., Nagata, T., Ishihama, A., Fujita, N., Isono, K., Mizobuchi, K. & Nakata, A. ( 1992; ). Systematic sequencing of the Escherichia coli genome: analysis of the 0–2.4 min region. Nucleic Acids Res 20, 3305–3308.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/014076-0
Loading
/content/journal/micro/10.1099/mic.0.2007/014076-0
Loading

Data & Media loading...

Supplements

Primers used in this research [PDF file](15 KB)

PDF

[PDF file](37 KB)

PDF

[PDF file](11 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error