1887

Abstract

Polyamines are important regulators of growth and differentiation in a variety of cells, including parasitic protozoa. Promastigotes of species have high levels of putrescine and spermidine and their growth can be inhibited by polyamine biosynthesis antagonists. The putrescine analogue 1,4-diamino-2-butanone (DAB) is microbicidal against and , so we tested its effects on proliferation, viability, organization, putrescine transport and synthesis as well as infectivity. DAB impaired promastigote proliferation dose-dependently (IC 144 μM) and the parasite putrescine concentration was reduced by nearly 50 %. This analogue markedly inhibited both ornithine decarboxylase activity and [H]putrescine uptake by promastigotes. Pre-treatment with DAB for 24 h led to compensatory enhancement of putrescine uptake, indicating an adaptive mechanism in DAB-treated parasites. Remarkably, DAB caused mitochondrial damage, assessed by transmission electron microscopy, and 3 h treatment with 1 mM DAB enhanced lipid peroxidation, whereas incubation with 10 mM DAB or for 24 h resulted in decreased peroxidation levels in the parasites. This effect was probably due to the loss of mitochondrial function, demonstrated by the diminished reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), not observed in macrophages. Murine macrophages infected with . amastigotes treated with DAB had parasite loads significantly (<0.05) lower than controls, presumably due to interference with putrescine uptake and/or synthesis. These results suggest that putrescine may be involved in leishmanial survival, possibly by maintaining the parasite's mitochondrial function. The use of analogues to interfere with polyamine/diamine synthesis and transport may shed light on its function in intracellular parasite survival and lead to identification of new targets for leishmaniasis chemotherapy.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013896-0
2008-10-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/10/3104.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013896-0&mimeType=html&fmt=ahah

References

  1. Ahasan, H. A., Chowdhury, M. A., Azhar, M. A., Rafiqueuddin, A. K. & Azad, K. A. ( 1996; ). Deaths in visceral leishmaniasis (Kala-azar) during treatment. Med J Malaysia 51, 29–32.
    [Google Scholar]
  2. Arteaga-Nieto, P., Villagomez-Castro, J. C., Calvo-Mendez, C. & Lopez-Romero, E. ( 1996; ). Partial purification and characterization of ornithine decarboxylase from Entamoeba histolytica. Int J Parasitol 26, 253–260.[CrossRef]
    [Google Scholar]
  3. Bacchi, C. J. & Yarlett, N. ( 2002; ). Polyamine metabolism as chemotherapeutic target in protozoan parasites. Mini Rev Med Chem 2, 553–563.[CrossRef]
    [Google Scholar]
  4. Balaña-Fouce, R., Escribano, M. I. & Alunda, J. M. ( 1991; ). Leishmania infantum: polyamine biosynthesis and levels during the growth of promastigotes. Int J Biochem 23, 1213–1217.[CrossRef]
    [Google Scholar]
  5. Basselin, M., Coombs, G. H. & Barrett, M. P. ( 2000; ). Putrescine and spermidine transport in Leishmania. Mol Biochem Parasitol 109, 37–46.[CrossRef]
    [Google Scholar]
  6. Basselin, M., Denise, H., Coombs, G. H. & Barrett, M. P. ( 2002; ). Resistance to pentamidine in Leishmania mexicana involves exclusion of the drug from the mitochondrion. Antimicrob Agents Chemother 46, 3731–3738.[CrossRef]
    [Google Scholar]
  7. Baumann, R. J., Hanson, W. L., McCann, P. P., Sjoerdsma, A. & Bitonti, A. J. ( 1990; ). Suppression of both antimony-susceptible and antimony-resistant Leishmania donovani by a bis(benzyl)polyamine analog. Antimicrob Agents Chemother 34, 722–727.[CrossRef]
    [Google Scholar]
  8. Baumann, R. J., McCann, P. P. & Bitonti, A. J. ( 1991; ). Suppression of Leishmania donovani by oral administration of a bis(benzyl)polyamine analog. Antimicrob Agents Chemother 35, 1403–1407.[CrossRef]
    [Google Scholar]
  9. Bellé, N. A., Dalmolin, G. D., Fonini, G., Rubin, M. A. & Rocha, J. B. ( 2004; ). Polyamines reduce lipid peroxidation induced by different pro-oxidant agents. Brain Res 1008, 245–251.[CrossRef]
    [Google Scholar]
  10. Bhattacharya, S. K., Sinha, P. K., Sundar, S., Thakur, C. P., Jha, T. K., Pandey, K., Das, V. R., Kumar, N., Lal, C. & other authors ( 2007; ). Phase 4 trial of miltefosine for the treatment of Indian visceral leishmaniasis. J Infect Dis 196, 591–598.[CrossRef]
    [Google Scholar]
  11. Bitonti, A. J., McCann, P. P., Bacchi, C. J. & other authors ( 1991; ). Polyamine biosynthesis as a target for the chemotherapy of trypanosomatid infection. In Biochemical Protozoology, pp. 506–516. Edited by G. Coombs & M. North. Taylor & Francis.
  12. Borges, V. M., Vannier-Santos, M. A. & de Souza, W. ( 1998; ). Subverted transferrin trafficking in Leishmania-infected macrophages. Parasitol Res 84, 811–822.[CrossRef]
    [Google Scholar]
  13. Calcabrini, A., Arancia, G., Marra, M., Crateri, P., Befani, O., Martone, A. & Agostinelli, E. ( 2002; ). Enzymatic oxidation products of spermine induce greater cytotoxic effects on human multidrug-resistant colon carcinoma cells (LoVo) than on their wild-type counterparts. Int J Cancer 99, 43–52.[CrossRef]
    [Google Scholar]
  14. Calvo-Méndez, C., Villagómez-Castro, J. C. & López-Romero, E. ( 1993; ). Ornithine decarboxylase activity in Entamoeba invadens. Int J Parasitol 23, 847–852.[CrossRef]
    [Google Scholar]
  15. Clarkson, A. B., Jr, Bienen, E. J., Pollakis, G. & Grady, R. W. ( 1989; ). Trypanocidal CoQ analogues: their effect on other mitochondrial systems. Comp Biochem Physiol B 94, 245–251.
    [Google Scholar]
  16. De Gee, A. L., Carstens, P. H., McCann, P. P. & Mansfield, J. M. ( 1984; ). Morphologic changes in Trypanosoma brucei rhodesiense following inhibition of polyamine biosynthesis in vivo. Tissue Cell 16, 731–738.[CrossRef]
    [Google Scholar]
  17. De Mello, F. G., Bachrach, U. & Nirenberg, M. ( 1976; ). Ornithine and glutamic acid decarboxylase activities in the developing chick retina. J Neurochem 27, 847–851.[CrossRef]
    [Google Scholar]
  18. Desjeux, P. ( 2004; ). Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27, 305–318.[CrossRef]
    [Google Scholar]
  19. Dupouy-Camet, J. ( 2004; ). New drugs for the treatment of human parasitic protozoa. Parassitologia 46, 81–84 (in French).
    [Google Scholar]
  20. Garcia, A. F., Benchimol, M. & Alderete, J. F. ( 2005; ). Trichomonas vaginalis polyamine metabolism is linked to host cell adherence and cytotoxicity. Infect Immun 73, 2602–2610.[CrossRef]
    [Google Scholar]
  21. Giffin, B. F., McCann, P. P. & Bacchi, C. J. ( 1986; ). Effect of putrescine on the respiration of Trypanosoma brucei brucei. Mol Biochem Parasitol 20, 165–171.[CrossRef]
    [Google Scholar]
  22. Gonzalez, N. S., Ceriani, C. & Algranati, I. D. ( 1992; ). Differential regulation of putrescine uptake in Trypanosoma cruzi and other trypanosomatids. Biochem Biophys Res Commun 188, 120–128.[CrossRef]
    [Google Scholar]
  23. Gradoni, L., Iorio, M. A., Gramiccia, M. & Orsini, S. ( 1989; ). In vivo effect of eflornithine (DFMO) and some related compounds on Leishmania. Farmaco 44, 1157–1166.
    [Google Scholar]
  24. Hanson, S., Adelman, J. & Ullman, B. ( 1992; ). Amplification and molecular cloning of the ornithine decarboxylase gene of Leishmania donovani. J Biol Chem 267, 2350–2359.
    [Google Scholar]
  25. Hasne, M. P. & Ullman, B. ( 2005; ). Identification and characterization of a polyamine permease from the protozoan parasite Leishmania major. J Biol Chem 280, 15188–15194.[CrossRef]
    [Google Scholar]
  26. Heby, O., Roberts, S. C. & Ullman, B. ( 2003; ). Polyamine biosynthetic enzymes as drug targets in parasitic protozoa. Biochem Soc Trans 31, 415–419.[CrossRef]
    [Google Scholar]
  27. Hernandez, S. M., Sanchez, M. S. & de Tarlovsky, M. N. ( 2006; ). Polyamines as a defense mechanism against lipoperoxidation in Trypanosoma cruzi. Acta Trop 98, 94–102.[CrossRef]
    [Google Scholar]
  28. Janvier, F., Morillon, M. & Olliaro, P. ( 2008; ). Visceral leishmaniasis: clinical sensitivity and resistance to various therapeutic agents. Med Trop (Mars) 68, 89–101 (in French).
    [Google Scholar]
  29. Jiang, Y., Roberts, S. C., Jardim, A., Carter, N. S., Shih, S., Ariyanayagam, M., Fairlamb, A. H. & Ullman, B. ( 1999; ). Ornithine decarboxylase gene deletion mutants of Leishmania donovani. J Biol Chem 274, 3781–3788.[CrossRef]
    [Google Scholar]
  30. Kandpal, M. & Tekwani, B. L. ( 1997; ). Polyamine transport systems of Leishmania donovani promastigotes. Life Sci 60, 1793–1801.[CrossRef]
    [Google Scholar]
  31. Khan, A. U., Mei, Y. H. & Wilson, T. ( 1992; ). A proposed function for spermine and spermidine: protection of replicating DNA against damage by singlet oxygen. Proc Natl Acad Sci U S A 89, 11426–11427.[CrossRef]
    [Google Scholar]
  32. Kita, K., Nihei, C. & Tomitsuka, E. ( 2003; ). Parasite mitochondria as drug target: diversity and dynamic changes during the life cycle. Curr Med Chem 10, 2535–2548.[CrossRef]
    [Google Scholar]
  33. McCann, P. P., Bacchi, C. J., Hanson, W. & other authors ( 1981; ). Effect on parasitic protozoa of α-difluoromethylornithine, an inhibitor of ornithine decarboxylase. In Advances in Polyamine Research, pp. 97–110. Edited by C. M. Calderera, C. M. Zappia & U. Bachrach. New York: Raven Press.
  34. McCann, P. P., Bitonti, A. J., Bacchi, C. J. & Clarkson, A. B., Jr ( 1987; ). Use of difluoromethylornithine (DFMO, eflornithine) for late-stage African trypanosomiasis. Trans R Soc Trop Med Hyg 81, 701–702.
    [Google Scholar]
  35. Menezes, D., Valentim, C., Oliveira, M. F. & Vannier-Santos, M. A. ( 2006; ). Putrescine analogue cytotoxicity against Trypanosoma cruzi. Parasitol Res 98, 99–105.[CrossRef]
    [Google Scholar]
  36. Mukhopadhyay, R. & Madhubala, R. ( 1995; ). Effects of bis(benzyl)polyamine analogs on Leishmania donovani promastigotes. Exp Parasitol 81, 39–46.[CrossRef]
    [Google Scholar]
  37. Müller, S., Coombs, G. H. & Walter, R. D. ( 2001; ). Targeting polyamines of parasitic protozoa in chemotherapy. Trends Parasitol 17, 242–249.[CrossRef]
    [Google Scholar]
  38. Ouellette, M., Drummelsmith, J. & Papadopoulou, B. ( 2004; ). Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist Updat 7, 257–266.[CrossRef]
    [Google Scholar]
  39. Redgate, E. S., Alexander, D., Magra, T. R., Henretty, J. S., Patrene, K. D. & Boggs, S. S. ( 2001; ). The effect of DFMO induced uptake of [3H]putrescine on human glioma cells. J Neurooncol 55, 71–80.[CrossRef]
    [Google Scholar]
  40. Reguera, R. M., Tekwani, B. L. & Balaña-Fouce, R. ( 2005; ). Polyamine transport in parasites: a potential target for new antiparasitic drug development. Comp Biochem Physiol C Toxicol Pharmacol 140, 151–164.[CrossRef]
    [Google Scholar]
  41. Reis, I. A., Martinez, M., Yarlett, N., Silva-Filho, F. C. & Vannier-Santos, M. A. ( 1999; ). Inhibition of polyamine synthesis arrests trichomonad growth and induces destruction of hydrogenosomes. Antimicrob Agents Chemother 43, 1919–1923.
    [Google Scholar]
  42. Seiler, N. & Lamberty, U. ( 1973; ). Interrelationships between polyamines and nucleic acids. Changes of polyamine and nucleic acid concentrations in the growing fish brain (Salmo irideus Gibb.). J Neurochem 20, 709–717.[CrossRef]
    [Google Scholar]
  43. Silva, J. B., Jr ( 2001; ). Antimoniato de meglumina. Rev Soc Bras Med Trop 34, 103–105.
    [Google Scholar]
  44. Skulachev, V. P. ( 1998; ). Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1363, 100–124.[CrossRef]
    [Google Scholar]
  45. Soto, J. & Toledo, J. ( 2007; ). Oral miltefosine to treat New World cutaneous leishmaniasis. Lancet Infect Dis 6, 342–349.
    [Google Scholar]
  46. Soto, J., Arana, B. A., Toledo, J., Rizzo, N., Vega, J. C., Diaz, A., Luz, M., Gutierrez, P., Arboleda, M. & other authors ( 2004; ). Miltefosine for New World cutaneous leishmaniasis. Clin Infect Dis 38, 1266–1272.[CrossRef]
    [Google Scholar]
  47. Soto, J., Rea, J., Balderrama, M., Toledo, J., Soto, P., Valda, L. & Berman, J. D. ( 2008; ). Efficacy of miltefosine for Bolivian cutaneous leishmaniasis. Am J Trop Med Hyg 78, 210–211.
    [Google Scholar]
  48. Stevens, L., McKinnon, I. M. & Winther, M. ( 1977; ). The effects of 1,4-diaminobutanone on polyamine synthesis in Aspergillus nidulans. FEBS Lett 75, 180–182.[CrossRef]
    [Google Scholar]
  49. Tadolini, B. ( 1988; ). Polyamine inhibition of lipoperoxidation. The influence of polyamines on iron oxidation in the presence of compounds mimicking phospholipid polar heads. Biochem J 249, 33–36.
    [Google Scholar]
  50. Tavares, J., Ouaissi, A., Lin, P. K., Tomas, A. & Cordeiro-da-Silva, A. ( 2005; ). Differential effects of polyamine derivative compounds against Leishmania infantum promastigotes and axenic amastigotes. Int J Parasitol 35, 637–646.[CrossRef]
    [Google Scholar]
  51. Troya, J., Casquero, A., Refoyo, E., Fernández-Guerrero, M. L. & Górgolas, M. ( 2008; ). Long term failure of miltefosine in the treatment of refractory visceral leishmaniasis in AIDS patients. Scand J Infect Dis 40, 78–80.[CrossRef]
    [Google Scholar]
  52. Tuon, F. F., Amato, V. S., Graf, M. E., Siqueira, A. M., Nicodemo, A. C. & Amato Neto, V. ( 2008; ). Treatment of New World cutaneous leishmaniasis – a systematic review with a meta-analysis. Int J Dermatol 47, 109–124.[CrossRef]
    [Google Scholar]
  53. van Daalen Wetters, T., Macrae, M., Brabant, M., Sittler, A. & Coffino, P. ( 1989; ). Polyamine-mediated regulation of mouse ornithine decarboxylase is posttranslational. Mol Cell Biol 9, 5484–5490.
    [Google Scholar]
  54. Vannier-Santos, M. A., Urbina, J. A., Martiny, A., Neves, A. & De Souza, W. ( 1995; ). Alterations induced by the antifungal compounds ketoconazole and terbinafine in Leishmania. J Eukaryot Microbiol 42, 337–346.[CrossRef]
    [Google Scholar]
  55. Vannier-Santos, M. A., Martiny, A., Lins, U., Urbina, J. A., Borges, V. M. & De Souza, W. ( 1999; ). Impairment of sterol biosynthesis leads to phosphorus and calcium accumulation in Leishmania acidocalcisomes. Microbiology 145, 3213–3220.
    [Google Scholar]
  56. Vannier-Santos, M. A., Martiny, A. & De Souza, W. ( 2002; ). Cell biology of Leishmania spp.: invading and evading. Curr Pharm Des 8, 297–318.[CrossRef]
    [Google Scholar]
  57. Zerpa, O., Ulrich, M., Blanco, B., Polegre, M., Avila, A., Matos, N., Mendoza, I., Pratlong, F., Ravel, C. & Convit, J. ( 2007; ). Diffuse cutaneous leishmaniasis responds to miltefosine but then relapses. Br J Dermatol 156, 1328–1335.[CrossRef]
    [Google Scholar]
  58. Zhang, K., Hsu, F. F., Scott, D. A., Docampo, R., Turk, J. & Beverley, S. M. ( 2005; ). Leishmania salvage and remodelling of host sphingolipids in amastigote survival and acidocalcisome biogenesis. Mol Microbiol 55, 1566–1578.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013896-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013896-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error