1887

Abstract

The adhesion of to host tissues contributes to its virulence, and adhesion to tissues or medical devices is a necessary step in biofilm formation. encodes a glycosylphosphatidylinositol (GPI)-anchored glucan-cross-linked cell wall protein that mediates adhesion of to various materials and cells, and appears to be required for biofilm formation and . In this study, we demonstrated that the Eap1p N-terminal signal peptide and C-terminal GPI-anchor sequences result in similar protein localization in and . To investigate the contribution of different Eap1p domains to adhesion, we expressed Eap1p domain deletion mutants in non-adherent strains. The N-terminal domain mediates yeast cell–cell adhesion and invasive growth. Two Ser/Thr-rich domains containing tandem repeats were required to project the N-terminal region into the extracellular environment and to mediate adhesion to polystyrene. The N-terminal tandem repeat domain mediated adhesion to mammalian epithelial cells and promoted pseudohyphal growth. These results suggest a modular structure of Eap1p in which each domain serves multiple, often distinct, functions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013789-0
2008-04-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/4/1193.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013789-0&mimeType=html&fmt=ahah

References

  1. Ahn, S. H., Acurio, A. & Kron, S. J. ( 1999; ). Regulation of G2/M progression by the STE mitogen-activated protein kinase pathway in budding yeast filamentous growth. Mol Biol Cell 10, 3301–3316.[CrossRef]
    [Google Scholar]
  2. Al-Fattani, M. A. & Douglas, L. J. ( 2004; ). Penetration of Candida biofilms by antifungal agents. Antimicrob Agents Chemother 48, 3291–3297.[CrossRef]
    [Google Scholar]
  3. Boder, E. T., Midelfort, K. S. & Wittrup, K. D. ( 2000; ). Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc Natl Acad Sci U S A 97, 10701–10705.[CrossRef]
    [Google Scholar]
  4. Calderone, R. A. & Fonzi, W. A. ( 2001; ). Virulence factors of Candida albicans. Trends Microbiol 9, 327–335.[CrossRef]
    [Google Scholar]
  5. Caro, L. H., Tettelin, H., Vossen, J. H., Ram, A. F., van den Ende, H. & Klis, F. M. ( 1997; ). In silicio identification of glycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13, 1477–1489.[CrossRef]
    [Google Scholar]
  6. Cormack, B. P., Bertram, G., Egerton, M., Gow, N. A., Falkow, S. & Brown, A. J. ( 1997; ). Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology 143, 303–311.[CrossRef]
    [Google Scholar]
  7. Dranginis, A. M., Rauceo, J. M., Coronado, J. E. & Lipke, P. N. ( 2007; ). A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 71, 282–294.[CrossRef]
    [Google Scholar]
  8. Edmond, M. B., Wallace, S. E., McClish, D. K., Pfaller, M. A., Jones, R. N. & Wenzel, R. P. ( 1999; ). Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 29, 239–244.[CrossRef]
    [Google Scholar]
  9. Frieman, M. B., McCaffery, J. M. & Cormack, B. P. ( 2002; ). Modular domain structure in the Candida glabrata adhesin Epa1p, a β1,6-glucan-cross-linked cell wall protein. Mol Microbiol 46, 479–492.[CrossRef]
    [Google Scholar]
  10. Fu, Y., Ibrahim, A. S., Sheppard, D. C., Chen, Y. C., French, S. W., Cutler, J. E., Filler, S. G. & Edwards, J. E., Jr ( 2002; ). Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol 44, 61–72.[CrossRef]
    [Google Scholar]
  11. Gaur, N. K. & Klotz, S. A. ( 1997; ). Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteins. Infect Immun 65, 5289–5294.
    [Google Scholar]
  12. Gietz, D., St Jean, A., Woods, R. A. & Schiestl, R. H. ( 1992; ). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20, 1425 [CrossRef]
    [Google Scholar]
  13. Guo, B., Styles, C. A., Feng, Q. & Fink, G. R. ( 2000; ). A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A 97, 12158–12163.[CrossRef]
    [Google Scholar]
  14. Hawser, S. P. & Douglas, L. J. ( 1995; ). Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 39, 2128–2131.[CrossRef]
    [Google Scholar]
  15. Hoyer, L. L. ( 2001; ). The ALS gene family of Candida albicans. Trends Microbiol 9, 176–180.[CrossRef]
    [Google Scholar]
  16. Jarvis, W. R. ( 1995; ). Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin Infect Dis 20, 1526–1530.[CrossRef]
    [Google Scholar]
  17. King, L. & Butler, G. ( 1998; ). Ace2p, a regulator of CTS1 (chitinase) expression, affects pseudohyphal production in Saccharomyces cerevisiae. Curr Genet 34, 183–191.[CrossRef]
    [Google Scholar]
  18. Kron, S. J., Styles, C. A. & Fink, G. R. ( 1994; ). Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Mol Biol Cell 5, 1003–1022.[CrossRef]
    [Google Scholar]
  19. Lambrechts, M. G., Bauer, F. F., Marmur, J. & Pretorius, I. S. ( 1996; ). Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci U S A 93, 8419–8424.[CrossRef]
    [Google Scholar]
  20. Li, F. & Palecek, S. P. ( 2003; ). EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot Cell 2, 1266–1273.[CrossRef]
    [Google Scholar]
  21. Li, F. & Palecek, S. P. ( 2005; ). Identification of Candida albicans genes that induce Saccharomyces cerevisiae cell adhesion and morphogenesis. Biotechnol Prog 21, 1601–1609.[CrossRef]
    [Google Scholar]
  22. Li, F., Svarovsky, M. J., Karlsson, A. J., Wagner, J. P., Marchillo, K., Oshel, P., Andes, D. & Palecek, S. P. ( 2007; ). Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot Cell 6, 931–939.[CrossRef]
    [Google Scholar]
  23. Liu, H., Styles, C. A. & Fink, G. R. ( 1996; ). Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144, 967–978.
    [Google Scholar]
  24. Lo, W. S. & Dranginis, A. M. ( 1998; ). The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9, 161–171.[CrossRef]
    [Google Scholar]
  25. Lopez-Ribot, J. L. ( 2005; ). Candida albicans biofilms: more than filamentation. Curr Biol 15, R453–R455.[CrossRef]
    [Google Scholar]
  26. Loza, L., Fu, Y., Ibrahim, A. S., Sheppard, D. C., Filler, S. G. & Edwards, J. E., Jr ( 2004; ). Functional analysis of the Candida albicans ALS1 gene product. Yeast 21, 473–482.[CrossRef]
    [Google Scholar]
  27. Mao, Y., Zhang, Z. & Wong, B. ( 2003; ). Use of green fluorescent protein fusions to analyse the N- and C-terminal signal peptides of GPI-anchored cell wall proteins in Candida albicans. Mol Microbiol 50, 1617–1628.[CrossRef]
    [Google Scholar]
  28. Palecek, S. P., Parikh, A. S. & Kron, S. J. ( 2000; ). Genetic analysis reveals that FLO11 upregulation and cell polarization independently regulate invasive growth in Saccharomyces cerevisiae. Genetics 156, 1005–1023.
    [Google Scholar]
  29. Pan, X. & Heitman, J. ( 2000; ). Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion. Mol Cell Biol 20, 8364–8372.[CrossRef]
    [Google Scholar]
  30. Pfaller, M. A. & Diekema, D. J. ( 2007; ). Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20, 133–163.[CrossRef]
    [Google Scholar]
  31. Pfaller, M. A., Jones, R. N., Messer, S. A., Edmond, M. B. & Wenzel, R. P. ( 1998; ). National surveillance of nosocomial blood stream infection due to Candida albicans: frequency of occurrence and antifungal susceptibility in the SCOPE Program. Diagn Microbiol Infect Dis 31, 327–332.[CrossRef]
    [Google Scholar]
  32. Phan, Q. T., Myers, C. L., Fu, Y., Sheppard, D. C., Yeaman, M. R., Welch, W. H., Ibrahim, A. S., Edwards, J. E., Jr & Filler, S. G. ( 2007; ). Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 5, e64 [CrossRef]
    [Google Scholar]
  33. Ramage, G., Vande Walle, K., Wickes, B. L. & Lopez-Ribot, J. L. ( 2001; ). Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 45, 2475–2479.[CrossRef]
    [Google Scholar]
  34. Rauceo, J. M., De Armond, R., Otoo, H., Kahn, P. C., Klotz, S. A., Gaur, N. K. & Lipke, P. N. ( 2006; ). Threonine-rich repeats increase fibronectin binding in the Candida albicans adhesin Als5p. Eukaryot Cell 5, 1664–1673.[CrossRef]
    [Google Scholar]
  35. Richard, M. L. & Plaine, A. ( 2007; ). Comprehensive analysis of glycosylphosphatidylinositol-anchored proteins in Candida albicans. Eukaryot Cell 6, 119–133.[CrossRef]
    [Google Scholar]
  36. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  37. Sheppard, D. C., Yeaman, M. R., Welch, W. H., Phan, Q. T., Fu, Y., Ibrahim, A. S., Filler, S. G., Zhang, M., Waring, A. J. & Edwards, J. E., Jr ( 2004; ). Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 279, 30480–30489.[CrossRef]
    [Google Scholar]
  38. Staab, J. F. & Sundstrom, P. ( 1998; ). Genetic organization and sequence analysis of the hypha-specific cell wall protein gene HWP1 of Candida albicans. Yeast 14, 681–686.[CrossRef]
    [Google Scholar]
  39. Staab, J. F., Bradway, S. D., Fidel, P. L. & Sundstrom, P. ( 1999; ). Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283, 1535–1538.[CrossRef]
    [Google Scholar]
  40. Svarovsky, M. J. & Palecek, S. P. ( 2005; ). Disruption of LRG1 inhibits mother-daughter separation in Saccharomyces cerevisiae. Yeast 22, 1117–1132.[CrossRef]
    [Google Scholar]
  41. Verstrepen, K. J., Jansen, A., Lewitter, F. & Fink, G. R. ( 2005; ). Intragenic tandem repeats generate functional variability. Nat Genet 37, 986–990.[CrossRef]
    [Google Scholar]
  42. Vyas, V. K., Kuchin, S., Berkey, C. D. & Carlson, M. ( 2003; ). Snf1 kinases with different beta-subunit isoforms play distinct roles in regulating haploid invasive growth. Mol Cell Biol 23, 1341–1348.[CrossRef]
    [Google Scholar]
  43. Wojciechowicz, D., Lu, C. F., Kurjan, J. & Lipke, P. N. ( 1993; ). Cell surface anchorage and ligand-binding domains of the Saccharomyces cerevisiae cell adhesion protein α-agglutinin, a member of the immunoglobulin superfamily. Mol Cell Biol 13, 2554–2563.
    [Google Scholar]
  44. Zhao, X., Oh, S. H., Yeater, K. M. & Hoyer, L. L. ( 2005; ). Analysis of the Candida albicans Als2p and Als4p adhesins suggests the potential for compensatory function within the Als family. Microbiology 151, 1619–1630.[CrossRef]
    [Google Scholar]
  45. Zhao, X., Oh, S. H. & Hoyer, L. L. ( 2007; ). Unequal contribution of ALS9 alleles to adhesion between Candida albicans and human vascular endothelial cells. Microbiology 153, 2342–2350.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013789-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013789-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error