1887

Abstract

Group A (GAS) possesses a complex regulatory system enabling the organism to colonize a range of physiologically distinct host sites. Within this network of regulators is the streptococcal regulator of virulence (Srv). Srv is a member of the CRP/FNR family of transcriptional regulators and is most similar to pleiotropic regulatory factor A (PrfA), a positive regulator of virulence in . Members of this family possess a characteristic C-terminal helix–turn–helix motif (HTH) that facilitates binding to DNA targets. Genome scanning identified four targets in GAS that were similar to the consensus DNA target recognized by PrfA. Furthermore, previous amino acid sequence alignments identified conserved residues within the Srv HTH which are necessary for function in PrfA and CRP. Here we investigated the ability of Srv to interact with DNA and evaluated the role of the HTH in this interaction. Purified recombinant Srv (rSrv) was found to co-purify with an untagged form of Srv. Glutaraldehyde cross-linking and gel-filtration chromatography indicated that this co-purification is likely due to the ability of Srv to oligomerize. Electrophoretic mobility shift assays (EMSAs) demonstrated that rSrv retarded the mobility of DNA targets and a supershift analysis confirmed the observation was rSrv-dependent. Competition EMSA indicated that rSrv had a higher relative affinity for the DNA targets studied than non-specific DNA. Site-directed mutagenesis of residues predicted to be in or near the HTH resulted in a decrease or abrogation of DNA binding. Complementation of MGAS5005Δ with one of these site-directed mutants failed to restore wild-type SpeB activity. Taken together, these data suggest that the Srv HTH is necessary for DNA binding and Srv function.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013466-0
2008-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/7/1998.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013466-0&mimeType=html&fmt=ahah

References

  1. Baichoo N., Heyduk T. 1997; Mapping conformational changes in a protein: application of a protein footprinting technique to cAMP-induced conformational changes in cAMP receptor protein. Biochemistry 36:10830–10836
    [Google Scholar]
  2. Banks D. J., Porcella S. F., Barbian K. D., Beres S. B., Philips L. E., Voyich J. M., DeLeo F. R., Martin J. M., Somerville G. A., Musser J. M. 2004; Progress toward characterization of the group A Streptococcus metagenome: complete genome sequence of a macrolide-resistant serotype M6 strain. J Infect Dis 190:727–738
    [Google Scholar]
  3. Beres S. B., Sylva G. L., Sturdevant D. E., Granville C. N., Liu M., Ricklefs S. M., Whitney A. R., Parkins L. D., Hoe N. P. other authors 2004; Genome-wide molecular dissection of serotype M3 group A Streptococcus strains causing two epidemics of invasive infections. Proc Natl Acad Sci U S A 101:11833–11838
    [Google Scholar]
  4. Blevins J. S., Gillaspy A. F., Rechtin T. M., Hurlburt B. K., Smeltzer M. S. 1999; The staphylococcal accessory regulator ( sar) represses transcription of the Staphylococcus aureus collagen adhesin gene ( cna) in an agr-independent manner. Mol Microbiol 33:317–326
    [Google Scholar]
  5. Bockmann R., Dickneite C., Middendorf B., Goebel W., Sokolovic Z. 1996; Specific binding of the Listeria monocytogenes transcriptional regulator PrfA to target sequences requires additional factor(s) and is influenced by iron. Mol Microbiol 22:643–653
    [Google Scholar]
  6. Bockmann R., Dickneite C., Goebel W., Bohne J. 2000; PrfA mediates specific binding of RNA polymerase of Listeria monocytogenes to PrfA-dependent virulence gene promoters resulting in a transcriptionally active complex. Mol Microbiol 36:487–497
    [Google Scholar]
  7. Bohne J., Kestler H., Uebele C., Sokolovic Z., Goebel W. 1996; Differential regulation of the virulence genes of Listeria monocytogenes by the transcriptional activator PrfA. Mol Microbiol 20:1189–1198
    [Google Scholar]
  8. Bubert A., Sokolovic Z., Chun S. K., Papatheodorou L., Simm A., Goebel W. 1999; Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol Gen Genet 261:323–336
    [Google Scholar]
  9. Cunningham M. W. 2000; Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 13:470–511
    [Google Scholar]
  10. Dickneite C., Bockmann R., Spory A., Goebel W., Sokolovic Z. 1998; Differential interaction of the transcription factor PrfA and the PrfA-activating factor (Paf) of Listeria monocytogenes with target sequences. Mol Microbiol 27:915–928
    [Google Scholar]
  11. Dramsi S., Kocks C., Forestier C., Cossart P. 1993; Internalin-mediated invasion of epithelial cells by Listeria monocytogenes is regulated by the bacterial growth state, temperature and the pleiotropic activator prfA. Mol Microbiol 9:931–941
    [Google Scholar]
  12. Ebright R. H., Cossart P., Gicquel-Sanzey B., Beckwith J. 1984a; Molecular basis of DNA sequence recognition by the catabolite gene activator protein: detailed inferences from three mutations that alter DNA sequence specificity. Proc Natl Acad Sci U S A 81:7274–7278
    [Google Scholar]
  13. Ebright R. H., Cossart P., Gicquel-Sanzey B., Beckwith J. 1984b; Mutations that alter the DNA sequence specificity of the catabolite gene activator protein of E. coli. Nature 311:232–235
    [Google Scholar]
  14. Eiting M., Hageluken G., Schubert W. D., Heinz D. W. 2005; The mutation G145S in PrfA, a key virulence regulator of Listeria monocytogenes, increases DNA-binding affinity by stabilizing the HTH motif. Mol Microbiol 56:433–446
    [Google Scholar]
  15. Ferretti J. J., McShan W. M., Ajdic D., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N. other authors 2001; Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A 98:4658–4663
    [Google Scholar]
  16. Freitag N. E., Rong L., Portnoy D. A. 1993; Regulation of the prfA transcriptional activator of Listeria monocytogenes: multiple promoter elements contribute to intracellular growth and cell-to-cell spread. Infect Immun 61:2537–2544
    [Google Scholar]
  17. Garges S., Adhya S. 1985; Sites of allosteric shift in the structure of the cyclic AMP receptor protein. Cell 41:745–751
    [Google Scholar]
  18. Garges S., Adhya S. 1988; Cyclic AMP-induced conformational change of cyclic AMP receptor protein (CRP): intragenic suppressors of cyclic AMP-independent CRP mutations. J Bacteriol 170:1417–1422
    [Google Scholar]
  19. Graham M. R., Smoot L. M., Migliaccio C. A., Virtaneva K., Sturdevant D. E., Porcella S. F., Federle M. J., Adams G. J., Scott J. R., Musser J. M. 2002; Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A 99:13855–13860
    [Google Scholar]
  20. Harman J. G. 2001; Allosteric regulation of the cAMP receptor protein. Biochim Biophys Acta 1547:1–17
    [Google Scholar]
  21. Harman J. G., McKenney K., Peterkofsky A. 1986; Structure–function analysis of three cAMP-independent forms of the cAMP receptor protein. J Biol Chem 261:16332–16339
    [Google Scholar]
  22. Herler M., Bubert A., Goetz M., Vega Y., Vazquez-Boland J. A., Goebel W. 2001; Positive selection of mutations leading to loss or reduction of transcriptional activity of PrfA, the central regulator of Listeria monocytogenes virulence. J Bacteriol 183:5562–5570
    [Google Scholar]
  23. Heyduk E., Heyduk T. 1994; Mapping protein domains involved in macromolecular interactions: a novel protein footprinting approach. Biochemistry 33:9643–9650
    [Google Scholar]
  24. Hueck C. J., Hillen W. 1995; Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram-positive bacteria?. Mol Microbiol 15:395–401
    [Google Scholar]
  25. Hynes W. L., Tagg J. R. 1985; A simple plate assay for detection of group A streptococcus proteinase. J Microbiol Methods 4:25–31
    [Google Scholar]
  26. Kaito C., Morishita D., Matsumoto Y., Kurokawa K., Sekimizu K. 2006; Novel DNA binding protein SarZ contributes to virulence in Staphylococcus aureus. Mol Microbiol 62:1601–1617
    [Google Scholar]
  27. Kolb A., Busby S., Buc H., Garges S., Adhya S. 1993; Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62:749–795
    [Google Scholar]
  28. Kreikemeyer B., McIver K. S., Podbielski A. 2003; Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen–host interactions. Trends Microbiol 11:224–232
    [Google Scholar]
  29. Kuusinen A., Abele R., Madden D. R., Keinanen K. 1999; Oligomerization and ligand-binding properties of the ectodomain of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunit GluRD. J Biol Chem 274:28937–28943
    [Google Scholar]
  30. Mengaud J., Vicente M. F., Cossart P. 1989; Transcriptional mapping and nucleotide sequence of the Listeria monocytogenes hlyA region reveal structural features that may be involved in regulation. Infect Immun 57:3695–3701
    [Google Scholar]
  31. Mengaud J., Dramsi S., Gouin E., Vazquez-Boland J. A., Milon G., Cossart P. 1991; Pleiotropic control of Listeria monocytogenes virulence factors by a gene that is autoregulated. Mol Microbiol 5:2273–2283
    [Google Scholar]
  32. Morfeldt E., Tegmark K., Arvidson S. 1996; Transcriptional control of the agr-dependent virulence gene regulator, RNAIII, in Staphylococcus aureus. Mol Microbiol 21:1227–1237
    [Google Scholar]
  33. Musser J. M., DeLeo F. R. 2005; Toward a genome-wide systems biology analysis of host-pathogen interactions in group A Streptococcus. Am J Pathol 167:1461–1472
    [Google Scholar]
  34. Parkinson G., Wilson C., Gunasekera A., Ebright Y. W., Ebright R. E., Berman H. M. 1996; Structure of the CAP–DNA complex at 2.5 angstroms resolution: a complete picture of the protein-DNA interface. J Mol Biol 260:395–408
    [Google Scholar]
  35. Passner J. M., Schultz S. C., Steitz T. A. 2000; Modeling the cAMP-induced allosteric transition using the crystal structure of CAP–cAMP at 2.1 Å resolution. J Mol Biol 304:847–859
    [Google Scholar]
  36. Pérez-Arellano I., Zúñiga M., Pérez-Martínez G. 2001; Construction of compatible wide-host-range shuttle vectors for lactic acid bacteria and Escherichia coli. Plasmid 46:106–116
    [Google Scholar]
  37. Ramsey D. M., Baynham P. J., Wozniak D. J. 2005; Binding of Pseudomonas aeruginosa AlgZ to sites upstream of the algZ promoter leads to repression of transcription. J Bacteriol 187:4430–4443
    [Google Scholar]
  38. Rechtin T. M., Gillaspy A. F., Schumacher M. A., Brennan R. G., Smeltzer M. S., Hurlburt B. K. 1999; Characterization of the SarA virulence gene regulator of Staphylococcus aureus. Mol Microbiol 33:307–316
    [Google Scholar]
  39. Reid S. D., Hoe N. P., Smoot L. M., Musser J. M. 2001; Group A Streptococcus: allelic variation, population genetics, and host–pathogen interactions. J Clin Invest 107:393–399
    [Google Scholar]
  40. Reid S. D., Montgomery A. G., Musser J. M. 2004; Identification of srv, a PrfA-like regulator of group A streptococcus that influences virulence. Infect Immun 72:1799–1803
    [Google Scholar]
  41. Reid S. D., Chaussee M. S., Doern C. D., Chaussee M. A., Montgomery A. G., Sturdevant D. E., Musser J. M. 2006; Inactivation of the group A Streptococcus regulator srv results in chromosome wide reduction of transcript levels, and changes in extracellular levels of Sic and SpeB. FEMS Immunol Med Microbiol 48:283–292
    [Google Scholar]
  42. Riggs A. D., Reiness G., Zubay G. 1971; Purification and DNA-binding properties of the catabolite gene activator protein. Proc Natl Acad Sci U S A 68:1222–1225
    [Google Scholar]
  43. Ripio M. T., Dominguez-Bernal G., Lara M., Suarez M., Vazquez-Boland J. A. 1997; A Gly145Ser substitution in the transcriptional activator PrfA causes constitutive overexpression of virulence factors in Listeria monocytogenes. J Bacteriol 179:1533–1540
    [Google Scholar]
  44. Schultz S. C., Shields G. C., Steitz T. A. 1990; Crystallization of Escherichia coli catabolite gene activator protein with its DNA binding site. The use of modular DNA. J Mol Biol 213:159–166
    [Google Scholar]
  45. Schultz S. C., Shields G. C., Steitz T. A. 1991; Crystal structure of a CAP–DNA complex: the DNA is bent by 90 degrees. Science 253:1001–1007
    [Google Scholar]
  46. Sheehan B., Klarsfeld A., Msadek T., Cossart P. 1995; Differential activation of virulence gene expression by PrfA, the Listeria monocytogenes virulence regulator. J Bacteriol 177:6469–6476
    [Google Scholar]
  47. Sheehan B., Klarsfeld A., Ebright R., Cossart P. 1996; A single substitution in the putative helix-turn-helix motif of the pleiotropic activator PrfA attenuates Listeria monocytogenes virulence. Mol Microbiol 20:785–797
    [Google Scholar]
  48. Shetron-Rama L. M., Mueller K., Bravo J. M., Bouwer H. G., Way S. S., Freitag N. E. 2003; Isolation of Listeria monocytogenes mutants with high-level in vitro expression of host cytosol-induced gene products. Mol Microbiol 48:1537–1551
    [Google Scholar]
  49. Smoot J. C., Barbian K. D., Van Gompel J. J., Smoot L. M., Chaussee M. S., Sylva G. L., Sturdevant D. E., Ricklefs S. M., Porcella S. F. other authors 2002; Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc Natl Acad Sci U S A 99:4668–4673
    [Google Scholar]
  50. Sterba K. M., Mackintosh S. G., Blevins J. S., Hurlburt B. K., Smeltzer M. S. 2003; Characterization of Staphylococcus aureus SarA binding sites. J Bacteriol 185:4410–4417
    [Google Scholar]
  51. Tuerk C., Gold L. 1990; Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510
    [Google Scholar]
  52. Vega Y., Dickneite C., Ripio M. T., Bockmann R., Gonzalez-Zorn B., Novella S., Dominguez-Bernal G., Goebel W., Vazquez-Boland J. A. 1998; Functional similarities between the Listeria monocytogenes virulence regulator PrfA and cyclic AMP receptor protein: the PrfA* (Gly145Ser) mutation increases binding affinity for target DNA. J Bacteriol 180:6655–6660
    [Google Scholar]
  53. Vega Y., Rauch M., Banfield M. J., Ermolaeva S., Scortti M., Goebel W., Vazquez-Boland J. A. 2004; New Listeria monocytogenes prfA* mutants, transcriptional properties of PrfA* proteins and structure–function of the virulence regulator PrfA. Mol Microbiol 52:1553–1565
    [Google Scholar]
  54. Velge P., Herler M., Johansson J., Roche S. M., Temoin S., Fedorov A. A., Gracieux P., Almo S. C., Goebel W., Cossart P. 2007; A naturally occurring mutation K220T in the pleiotropic activator PrfA of Listeria monocytogenes results in a loss of virulence due to decreasing DNA-binding affinity. Microbiology 153:995–1005
    [Google Scholar]
  55. Weber I. T., Steitz T. A. 1987; Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 Å resolution. J Mol Biol 198:311–326
    [Google Scholar]
  56. Zhang X. P., Ebright R. H. 1990; Identification of a contact between arginine-180 of the catabolite gene activator protein (CAP) and base pair 5 of the DNA site in the CAP–DNA complex. Proc Natl Acad Sci U S A 87:4717–4721
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013466-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013466-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error