1887

Abstract

HAW-EB4 was previously isolated for its potential to mineralize hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from a UXO (unexploded ordnance)-contaminated marine sediment site near Halifax Harbor. The present study was undertaken to determine the effect of terminal electron acceptors (TEA) on the growth of strain HAW-EB4 and on the enzymic processes involved in RDX metabolism. The results showed that aerobic conditions were optimal for bacterial growth, but that anaerobic conditions in the presence of trimethylamine -oxide (TMAO) or in the absence of TEA favoured RDX metabolism. RDX as a substrate neither stimulated respiratory growth nor induced its own biotransformation. Strain HAW-EB4 used periplasmic proteins to transform RDX to both nitroso [hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX)] and ring cleavage products (such as methylenedinitramine), with more nitroso formation in cells grown on TMAO or pre-incubated in the absence of TEA. Using spectroscopy, SDS-PAGE and haem-staining analysis, strain HAW-EB4 was found to produce different sets of -type cytochromes when grown on various TEA, with several more cytochromes produced in cells grown on TMAO. Crude cytochromes from total periplasmic proteins of TMAO-grown cells metabolized RDX to products similar to those found in assays using total periplasmic proteins and whole cells. To prove the involvement of cytochrome in RDX metabolism, we monitored dithionite- or NADH-reduced cytochromes by their absorbance at the (551 nm) or (418–420 nm) bands during anaerobic incubation with RDX. In both cases we found that RDX biotransformation was accompanied by oxidation of reduced cytochrome. Furthermore, O, an oxidant of reduced cytochrome, inhibited RDX transformation. The present results demonstrate that HAW-EB4 metabolizes RDX optimally under TMAO-reducing conditions, and that -type cytochromes are involved.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013409-0
2008-04-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/4/1026.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013409-0&mimeType=html&fmt=ahah

References

  1. Aubert C., Lojou E., Bianco P., Rousset M., Durand M., Bruschi M., Dolla A.. 1998; The Desulfuromonas acetoxidans triheme cytochrome c7 produced in Desulfovibrio desulfuricans retains its metal reductase activity. Appl Environ Microbiol64:1308–1312
    [Google Scholar]
  2. Balakrishnan V. K., Halasz A., Hawari J.. 2003; Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates. Environ Sci Technol37:1838–1843
    [Google Scholar]
  3. Bartsch R. G.. 1968; Bacterial cytochromes. Annu Rev Microbiol22:181–200
    [Google Scholar]
  4. Bhushan B., Halasz A., Spain J. C., Hawari J.. 2002; Diaphorase catalyzed biotransformation of N-denitration mechanism. Biochem Biophys Res Commun296:779–784
    [Google Scholar]
  5. Bhushan B., Trott S., Spain J. C., Halasz A., Paquet L., Hawari J.. 2003; Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a rabbit liver cytochrome P450: insight into the mechanism of RDX biodegradation by Rhodococcus sp. strain DN22. Appl Environ Microbiol69:1347–1351
    [Google Scholar]
  6. Bhushan B., Halasz A., Hawari J.. 2006; Effect of iron(III), humic acids and anthraquinone-2,6-disulfonate on biodegradation of cyclic nitramines by Clostridium sp. EDB2. J Appl Microbiol100:555–563
    [Google Scholar]
  7. Birdsell D. C., Cota-Robles E. H.. 1967; Production and ultrastructure of lysozyme and EDTA-lysozyme spheroplasts of Escherichia coli. J Bacteriol93:427–437
    [Google Scholar]
  8. Bowman J. P., Brenner D. J.. 2005; Genus XIII Shewanella MacDonell and Colwell 1986, 355VP. In Bergey's Manual of Systematic Bacteriology, 2nd edn.vol. 2 part B, pp480–491 Edited by Krieg N. R., Staley J. T.. New York: Springer-Verlag;
  9. Crocker F. H., Indest K. J., Fredrickson H. L.. 2006; Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20. Appl Microbiol Biotechnol73:274–290
    [Google Scholar]
  10. Dos Santos J.-P., Iobbi-Nivol C., Couillault C., Giordano G., Méjean V.. 1998; Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species. J Mol Biol284:421–433
    [Google Scholar]
  11. Easter M. C., Gibson D. M., Ward F. B.. 1983; The induction and location of trimethylamine- N-oxide reductase in Alteromonas sp. NCIMB 400. J Gen Microbiol129:3689–3696
    [Google Scholar]
  12. Einsle O., Stach P., Messerschmidt A., Simoni J., Krögeri A., Huber R., Kroneck P. M. H.. 2000; Cytochrome c nitrite reductase from Wolinella succinogenes: structure at 1.6 Å resolutions, inhibitor binding, and heme-packing motifs. J Biol Chem275:39608–39616
    [Google Scholar]
  13. EPA 1988; Health Advisory for Hexahydro-1,3,5-trinitro-1,3,5-triazine ( RDX Washington, DC: US Environmental Protection Agency, Office of Drinking Water, Criteria and Standards Division;
    [Google Scholar]
  14. Fauque G., Herve D., Le Gall J.. 1979; The role of cytochrome c3 in the reduction of colloidal sulfur by sulfate-reducing bacteria. Arch Microbiol121:261–264
    [Google Scholar]
  15. Fournier D., Halasz A., Spain J., Fiurasek P., Hawari J.. 2002; Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22. Appl Environ Microbiol68:166–172
    [Google Scholar]
  16. Gordon E. H. J., Pike A. D., Hill A. E., Cuthbertson P. M., Chapman S. K., Reid G. A.. 2000; Identification and characterization of a novel cytochrome c3 from Shewanella frigidimarina that is involved in Fe (III) respiration. Biochem J349:153–158
    [Google Scholar]
  17. Hawari J., Halasz A., Sheremata T., Beaudet S., Groom C., Paquet L., Rhofir C., Ampleman G., Thiboutot S.. 2000; Characterization of metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl Environ Microbiol66:2652–2657
    [Google Scholar]
  18. Jørgensen K. S.. 1989; Annual pattern of denitrification and nitrate ammonification in estuarine sediment. Appl Environ Microbiol55:1841–1847
    [Google Scholar]
  19. Kamykowski D., Zentara S.-J.. 1985; Nitrate and silicic acid in the world ocean: patterns and processes. Mar Ecol Prog Ser26:47–59
    [Google Scholar]
  20. Kaspar H. F.. 1982; Denitrification in marine sediment: measurement of capacity and estimate of in situ rate. Appl Environ Microbiol43:522–527
    [Google Scholar]
  21. Kelly R. H., Yancey P. H.. 1999; High contents of trimethylamine oxide correlating with depth in deep-sea teleost fishes, skates and decapod crustaceans. Biol Bull196:18–25
    [Google Scholar]
  22. Kitts C. L., Green C. E., Otley R. A., Alvarez M. A., Unkefer P. J.. 2000; Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6,-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine. Can J Microbiol46:278–282
    [Google Scholar]
  23. Kwon M. J., Finneran K. T.. 2006; Microbially-mediated biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by extra-cellular electron shuttling compounds. Appl Environ Microbiol72:5933–5941
    [Google Scholar]
  24. Lewis T. A., Newcombe D. A., Crawford R. L.. 2004; Bioremediation of soils contaminated with explosives. J Environ Manage70:291–307
    [Google Scholar]
  25. Liu M.-C., Peck H. D. Jr. 1981; The isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase. J Biol Chem256:13159–13164
    [Google Scholar]
  26. Lotufo G. R., Farrar J. D., Inouye L. S., Bridges T. S., Ringelberg D. B.. 2001; Toxicity of sediment-associated nitroaromatic and cyclonitramine compounds to benthic invertebrates. Environ Toxicol Chem20:1762–1771
    [Google Scholar]
  27. Lovley D. R., Phillips E. J. P.. 1994; Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl Environ Microbiol60:726–728
    [Google Scholar]
  28. Lovley D. R., Widman P. K., Woodward J. C., Phillips E. J. P.. 1993; Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol59:3572–3576
    [Google Scholar]
  29. Morris C. J., Gibson D. M., Ward F. B.. 1990; Influence of respiratory substrate on the cytochrome content of Shewanella putrefaciens. FEMS Microbiol Lett57:259–262
    [Google Scholar]
  30. Peterson F. J., Mason R. P., Hovsepian J., Holtzman J. L.. 1979; Oxygen-sensitive and -insensitive nitroreduction by Escherichia coli and rat hepatic microsomes. J Biol Chem254:4009–4014
    [Google Scholar]
  31. Pitts K. E., Dobbin P. S., Reyes-Ramirez F., Thomson A. J., Richardson D. J., Seward H. E.. 2003; Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA. J Biol Chem278:27758–27765
    [Google Scholar]
  32. Poock S. R., Leach E. R., Moir J. W. B., Cole J. A., Richardson D. J.. 2002; Respiratory detoxification of nitric oxide by the cytochrome c nitrite reductase of Escherichia coli. J Biol Chem277:23664–23669
    [Google Scholar]
  33. Poole R. K.. 1994; Analysis of cytochrome. In Chemical Methods in Prokaryotic Systematics pp311–344 Edited by Goodfellow M., O'Donnell A. G.. Toronto: John Wiley and Sons;
  34. Prospero J. M., Savoie D. L.. 1989; Effect of continental sources on nitrate concentrations over the Pacific Ocean. Nature339:687–689
    [Google Scholar]
  35. Reid G. A., Gordon E. H. J.. 1999; Phylogeny of marine and freshwater Shewanella: reclassification of Shewanella putrefaciens NCIMB 400 as Shewanella frigidimarina. Int J Syst Bacteriol49:189–191
    [Google Scholar]
  36. Reyes-Ramirez F., Dobbin P., Sawers G., Richardson D. J.. 2003; Characterization of transcriptional regulation of Shewanella frigidimarina Fe (III)-induced flavocytochrome c reveals a novel iron-responsive gene regulation system. J Bacteriol185:4564–4571
    [Google Scholar]
  37. Robidoux P. Y., Hawari J., Bardai G., Paquet L., Ampleman G., Thiboutot S., Sunahara G. I.. 2002; TNT, RDX, and HMX decrease earthworm ( Eisenia andrei) life-cycle responses in a spiked natural forest soil. Arch Environ Contam Toxicol43:379–388
    [Google Scholar]
  38. Sayama M.. 2001; Presence of nitrate-accumulating sulfur bacteria and their influence on nitrogen cycling in shallow coastal marine sediment. Appl Environ Microbiol67:3481–3487
    [Google Scholar]
  39. Seth-Smith H. M. B., Rosser S. J., Basran A., Travis E. R., Dabbs E. R., Nicklin S., Bruce N. C.. 2002; Cloning, sequencing and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol68:4764–4771
    [Google Scholar]
  40. Thomas P. E., Ryan D., Levin W.. 1976; An improved staining procedure for the detection of the peroxidase activity of cytochrome P-450 on sodium dodecyl sulfate polyacrylamide gels. Anal Biochem75:168–176
    [Google Scholar]
  41. Tsapin A. I., Nealson K. H., Meyers T., Cusanovich M. A., Van Beuumen J., Crosby L. D., Feinberg B. A., Zhang C.. 1996; Purification and properties of a low-redox-potential tetraheme cytochrome c3 from Shewanella putrefaciens. J Bacteriol178:6386–6388
    [Google Scholar]
  42. Tsapin A. I., Vandenberghe I., Nealson K. H., Scott J. H., Meyer T. E., Cusanovich M. A., Harada E., Kaizu T., Akutsu H.. other authors 2001; Identification of a small tetraheme cytochrome c and a flavocytochrome c as two of the principal soluble cytochromes c in Shewanella oneidensis strain MR1. Appl Environ Microbiol67:3236–3244
    [Google Scholar]
  43. Yamada M., Nakasone K., Tamegai H., Kato C., Usami R., Horikoshi K.. 2000; Pressure regulation of soluble cytochromes c in a deep-sea piezophilic bacterium, Shewanella violacea. J Bacteriol182:2945–2952
    [Google Scholar]
  44. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N.. 1982; Living with water stress: evolution of osmolyte systems. Science217:1214–1222
    [Google Scholar]
  45. Zhao J.-S., Halasz A., Paquet L., Beaulieu C., Hawari J.. 2002; Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl Environ Microbiol68:5336–5341
    [Google Scholar]
  46. Zhao J.-S., Paquet L., Halasz A., Hawari J.. 2003; Metabolism of hexahydro-1,3,5-trinitro-1,3,5-triazine through initial reduction to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine followed by denitration in Clostridium bifermentans HAW-1. Appl Microbiol Biotechnol63:187–193
    [Google Scholar]
  47. Zhao J.-S., Fournier D., Thiboutot S., Ampleman G., Hawari J.. 2004a; Biodegradation and bioremediation of explosives. . In Applied Bioremediation and Phytoremediation, Soil Biology vol. 1 pp55–80 Edited by Singh A., Ward O. P. Berlin: Springer-Verlag;
  48. Zhao J.-S., Spain J., Thiboutot S., Ampleman G., Greer C., Hawari J.. 2004b; Phylogeny of cyclic nitramine-degrading psychrophilic bacteria in marine sediment and their potential role in the natural attenuation of explosives. FEMS Microbiol Ecol49:349–357
    [Google Scholar]
  49. Zhao J.-S., Manno D., Beaulieu C., Paquet L., Hawari J.. 2005; Shewanella sediminis sp. nov, a novel Na+-requiring and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-degrading bacterium from marine sediment. Int J Syst Evol Microbiol55:1511–1520
    [Google Scholar]
  50. Zhao J.-S., Manno D., Hawari J.. 2006; Shewanella halifaxensis sp. nov, a novel obligately respiratory and denitrifying psychrophile. Int J Syst Evol Microbiol56:205–212
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013409-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013409-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error