1887

Abstract

Cells of the Gram-negative bacterium respond to blue light by producing carotenoids, pigments that play a protective role against the oxidative effects of light. Blue light triggers a network of regulatory actions that lead to the transcriptional activation of the structural genes for carotenoid synthesis. The product of , similar to a family of proteins of unknown function called Kua, is an early regulator of this process. Previous genetic data indicate that CarF participates in the light-dependent inactivation of the antisigma factor CarR. In the dark, CarR sequesters the ECF-sigma factor CarQ to the membrane, thereby preventing the activation of the structural genes for carotenoid synthesis. Using a bacterial two-hybrid system, we show here that both CarF and CarQ physically interact with CarR. These results, together with the finding that CarF is located at the membrane, support the hypothesis that CarF acts as an anti-antisigma factor. Comparison of CarF with other Kua proteins shows a remarkable conservation of a number of histidine residues. The effects on CarF function of several histidine to alanine substitutions and of the truncation of specific CarF domains are also reported here.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013359-0
2008-03-01
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/3/895.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013359-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R., Seidman J. G., Smith J. A., Struhl K.. 1988; Current Protocols in Molecular Biology New York: John Wiley & Sons;
    [Google Scholar]
  2. Balsalobre J. M., Ruiz-Vázquez R. M., Murillo F. J.. 1987; Light induction of gene expression in Myxococcus xanthus . Proc Natl Acad Sci U S A84:2359–2362
    [Google Scholar]
  3. Botella J. A., Murillo F. J., Ruiz-Vázquez R.. 1995; A cluster of structural and regulatory genes for light-induced carotenogenesis in Myxococcus xanthus . Eur J Biochem233:238–248
    [Google Scholar]
  4. Bretscher A. P., Kaiser D.. 1978; Nutrition of Myxococcus xanthus , a fruiting myxobacterium. J Bacteriol133:763–768
    [Google Scholar]
  5. Browning D. F., Whitworth D. E., Hodgson D. A.. 2003; Light-induced carotenogenesis in Myxococcus xanthus : functional characterization of the ECF sigma factor CarQ and antisigma factor CarR. Mol Microbiol48:237–251
    [Google Scholar]
  6. Campbell E. A., Darst S. A.. 2000; The anti- σ factor SpoIIAB forms a 2: 1 complex with σ F, contacting multiple conserved regions of the σ factor. J Mol Biol300:17–28
    [Google Scholar]
  7. Carrero-Lérida J., Moraleda-Muñoz A., García-Hernández R., Pérez J., Muñoz-Dorado J.. 2005; PhoR1-PhoP1, a third two-component system of the family PhoRP from Myxococcus xanthus : role in development. J Bacteriol187:4976–4983
    [Google Scholar]
  8. Cayuela M. L., Elías-Arnanz M., Peñalver-Mellado M., Padmanabhan S., Murillo F. J.. 2003; The Stigmatella aurantiaca homolog of Myxococcus xanthus HMGA-type transcription factor CarD: insights into the functional modules of CarD and their distribution in bacteria. J Bacteriol185:3527–3537
    [Google Scholar]
  9. Cervantes M., Murillo F. J.. 2002; Role for vitamin B12 in light induction of gene expression in the bacterium Myxococcus xanthus . J Bacteriol184:2215–2224
    [Google Scholar]
  10. Cho K., Zusman D. R.. 1999; AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus . Mol Microbiol34:268–281
    [Google Scholar]
  11. Elías-Arnanz M., Fontes M., Padmanabhan S.. 2008; Carotenogenesis in Myxococcus xanthus : a complex regulatory network. In Myxobacteria: Multicellularity and Differentiation pp211–225 Edited by Whitworth D. E.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Fontes M., Ruiz-Vázquez R., Murillo F. J.. 1993; Growth phase dependence of the activation of a bacterial gene for carotenoid synthesis by blue light. EMBO J12:1265–1275
    [Google Scholar]
  13. Fontes M., Galbis-Martínez L., Murillo F. J.. 2003; A novel regulatory gene for light-induced carotenoid synthesis in the bacterium Myxococcus xanthus . Mol Microbiol47:561–571
    [Google Scholar]
  14. Galbis-Martínez M., Fontes M., Murillo F. J.. 2004; The high-mobility group A-type protein CarD of the bacterium Myxococcus xanthus as a transcription factor for several distinct vegetative genes. Genetics167:1585–1595
    [Google Scholar]
  15. Golemis E. A., Serebriiskii I.. 2001; Recent developments in two hybrid technology. In Molecular Cloning: a Laboratory Manual , 3rd edn. pp18.16–18.47 Edited by Sambrook J., Russell D. W. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Gorham H. C., McGowan S. J., Robson P., Hodgson D. A.. 1996; Light-induced carotenogenesis in Myxococcus xanthus : light-dependent membrane sequestration of ECF sigma factor CarQ by anti-sigma factor CarR. Mol Microbiol19:171–186
    [Google Scholar]
  17. Gött P., Boos W.. 1988; The transmembrane topology of the sn-glycerol-3-phosphate permease of Escherichia coli analysed by phoA and lacZ protein fusions. Mol Microbiol2:655–663
    [Google Scholar]
  18. Hanahan D.. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580
    [Google Scholar]
  19. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R.. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene77:51–59
    [Google Scholar]
  20. Ho M. S., Carniol K., Losick R.. 2003; Evidence in support of a docking model for the release of the transcription factor σ F from the antisigma factor SpoIIAB in Bacillus subtilis . J Biol Chem278:20898–20905
    [Google Scholar]
  21. Hodgson D. A.. 1993; Light-induced carotenogenesis in Myxococcus xanthus : genetic analysis of the carR region. Mol Microbiol7:471–488
    [Google Scholar]
  22. Karimova G., Pidoux J., Ullmann A., Ladant D.. 1998; A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A95:5752–5756
    [Google Scholar]
  23. Karimova G., Ullmann A., Ladant D.. 2000; A bacterial two-hybrid system that exploits a cAMP signaling cascade in Escherichia coli . Methods Enzymol328:59–73
    [Google Scholar]
  24. López-Rubio J. J., Elias-Arnanz M., Padmanabhan S., Murillo F. J.. 2002; A repressor-antirepressor pair links two loci controlling light-induced carotenogenesis in Myxococcus xanthus . J Biol Chem277:7262–7270
    [Google Scholar]
  25. López-Rubio J. J., Padmanabhan S., Lázaro J. M., Salas M., Murillo F. J., Elías-Arnanz M.. 2004; Operator design and mechanism for CarA repressor-mediated down-regulation of the photoinducible carB operon in Myxococcus xanthus . J Biol Chem279:28945–28953
    [Google Scholar]
  26. Los D. A., Murata N.. 1998; Structure and expression of fatty acid desaturases. Biochim Biophys Acta1394:3–15
    [Google Scholar]
  27. Martínez-Argudo I., Ruiz-Vázquez R. M., Murillo F. J.. 1998; The structure of an ECF- σ -dependent, light-inducible promoter from the bacterium Myxococcus xanthus . Mol Microbiol30:883–893
    [Google Scholar]
  28. Martínez-Laborda A., Murillo F. J.. 1989; Genic and allelic interactions in the carotenogenic response of Myxococcus xanthus to blue light. Genetics122:481–490
    [Google Scholar]
  29. McGowan S. J., Gorham H. C., Hodgson D. A.. 1993; Light-induced carotenogenesis in Myxococcus xanthus : DNA sequence analysis of the carR region. Mol Microbiol10:713–735
    [Google Scholar]
  30. Mitchell A. G., Martin C. E.. 1997; Fah1p, a Saccharomyces cerevisiae cytochrome b5 fusion protein, and its Arabidopsis thaliana homolog that lacks the cytochrome b5 domain both function in the alpha-hydroxylation of sphingolipid-associated very long chain fatty acids. J Biol Chem272:28281–28288
    [Google Scholar]
  31. Moraleda-Muñoz A., Pérez J., Fontes M., Murillo F. J., Muñoz-Dorado J.. 2005; Copper-induction of carotenoid synthesis in the bacterium Myxococcus xanthus . Mol Microbiol56:1159–1168
    [Google Scholar]
  32. Moreno A. J., Fontes M., Murillo F. J.. 2001; ihfA gene of the bacterium Myxococcus xanthus and its role in activation of carotenoid genes by blue light. J Bacteriol183:557–569
    [Google Scholar]
  33. Navarro-Avilés G., Jiménez M. A., Pérez-Marín M. C., González C., Rico M., Murillo F. J., Elías-Arnanz M., Padmanabhan S.. 2007; Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor. Mol Microbiol63:980–994
    [Google Scholar]
  34. Nicolás F. J., Ruiz-Vázquez R. M., Murillo F. J.. 1994; A genetic link between light response and multicellular development in the bacterium Myxococcus xanthus . Genes Dev8:2375–2387
    [Google Scholar]
  35. Nicolás F. J., Cayuela M. L., Martínez-Argudo I. M., Ruiz-Vázquez R. M., Murillo F. J.. 1996; High mobility group I (Y)-like DNA domains on a bacterial transcription factor. Proc Natl Acad Sci U S A93:6881–6885
    [Google Scholar]
  36. Padmanabhan S., Elias-Arnanz M., Carpio E., Aparicio P., Murillo F. J.. 2001; Domain architecture of a high mobility group A-type bacterial transcriptional factor. J Biol Chem276:41566–41575
    [Google Scholar]
  37. Peñalver-Mellado M., García-Heras F., Padmanabhan S., García-Moreno D., Murillo F. J., Elías-Arnanz M.. 2006; Recruitment of a novel zinc-bound transcriptional factor by a bacterial HMGA-type protein is required for regulating multiple processes in Myxococcus xanthus . Mol Microbiol61:910–926
    [Google Scholar]
  38. Pérez-Marín M. C., López-Rubio J. J., Murillo F. J., Elías-Arnanz M., Padmanabhan S.. 2004; The N-terminus of Myxococcus xanthus CarA repressor is an autonomously folding domain that mediates physical and functional interactions with both operator DNA and antirepressor protein. J Biol Chem279:33093–33103
    [Google Scholar]
  39. Petit F., Guespin-Michel J. F.. 1992; Production of an extracellular milk clotting activity during development in Myxococcus xanthus . J Bacteriol174:5136–5140
    [Google Scholar]
  40. Ruiz-Vázquez R. M., Murillo F. J.. 1984; Abnormal motility and fruiting behavior of Myxococcus xanthus bacteriophage resistant strains induced by a clear plaque mutant of bacteriophage Mx8. J Bacteriol160:818–821
    [Google Scholar]
  41. Ruiz-Vázquez R. M., Fontes M., Murillo F. J.. 1993; Clustering and co-ordinated activation of carotenoid genes in Myxococcus xanthus by blue light. Mol Microbiol10:25–34
    [Google Scholar]
  42. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual , 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Shanklin J., Whittle E., Fox B. G.. 1994; Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry33:12787–12794
    [Google Scholar]
  44. Shanklin J., Achim C., Schmidt H., Fox B. G., Munck E.. 1997; Mossbauer studies of alkane omega-hydroxylase: evidence for a diiron cluster in an integral-membrane enzyme. Proc Natl Acad Sci U S A94:2981–2986
    [Google Scholar]
  45. Stephens K., Kaiser D.. 1987; Genetics of gliding motility in Myxococcus xanthus : molecular cloning of the mgl locus. Mol Gen Genet207:256–266
    [Google Scholar]
  46. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W.. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol185:60–89
    [Google Scholar]
  47. Thomson T. M., Lozano J. J., Loukili N., Carrio R., Serras F., Cormand B., Valeri M., Diaz V. M., Abril J.. other authors 2000; Fusion of the human gene for the polyubiquitination coeffector UEV1 with Kua , a newly identified gene. Genome Res10:1743–1756
    [Google Scholar]
  48. Whitworth D. E., Hodgson D. A.. 2001; Light-induced carotenogenesis in Myxococcus xanthus : evidence that CarS acts as an anti-repressor of CarA. Mol Microbiol42:809–819
    [Google Scholar]
  49. Yanisch-Perron C., Vieira J., Messing J.. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene33:103–119
    [Google Scholar]
  50. Yudkin M. D., Clarkson J.. 2005; Differential gene expression in genetically identical sister cells: the initiation of sporulation in Bacillus subtilis . Mol Microbiol56:578–589
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013359-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013359-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error