1887

Abstract

The protein Mpn474 encoded by the gene of the human-pathogenic contains 1033 amino acids and has an isoelectric point of 4.79, which is caused by the large excess of glutamic acid residues (11 %). Although the protein lacks recognizable export signals we showed by immuno-electron microscopy that Mpn474 is surface exposed, covering the cell completely. By combining cross-linking and careful treatment of the bacterial cells with Triton X-100, we found that this protein is weakly bound to the cell surface, while the true transmembrane protein Mpn141 (adhesin P1) is firmly attached under the same experimental conditions. A transposon mutant in the gene which has no obvious phenotype, served as negative control for the immunodetection.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013342-0
2008-04-01
2022-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/4/1185.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013342-0&mimeType=html&fmt=ahah

References

  1. Aloy P., Russell R. B. 2006; Structural systems biology: modelling protein interactions. Nat Rev Mol Cell Biol 7:188–197
    [Google Scholar]
  2. Balish M. F., Krause D. C. 2003; Cytadherence and the cytoskeleton. In Molecular Biology and Pathogenicity of Mycoplasmas pp 491–518 Edited by Razin S., Herrmann R. New York: Kluver Academic/Plenum Publishers;
    [Google Scholar]
  3. Bansal P., Adegboye D. S., Rosenbusch R. F. 1995; Immune responses to the capsular polysaccharide of Mycoplasma dispar in calves and mice. Comp Immunol Microbiol Infect Dis 18:259–268
    [Google Scholar]
  4. Baseman J. B., Cole R. M., Krause D. C., Leith D. K. 1982; Molecular basis for cytadsorption of Mycoplasma pneumoniae. J Bacteriol 151:1514–1522
    [Google Scholar]
  5. Bendtsen J. D., Kiemer L., Fausbol A., Brunak S. 2005; Non-classical protein secretion in bacteria. BMC Microbiol 5:58
    [Google Scholar]
  6. Biberfeld G., Biberfeld P. 1970; Ultrastructural features of Mycoplasma pneumoniae. J Bacteriol 102:855–861
    [Google Scholar]
  7. Carballido-López R., Errington J. 2003; A dynamic bacterial cytoskeleton. Trends Cell Biol 13:577–583
    [Google Scholar]
  8. Carlemalm E., Garavito R. M., Villinger W. 1982; Resin development for electron microscopy and an analysis of embedding at low temperature. J Bacteriol 159:138–144
    [Google Scholar]
  9. Citti C., Kim M. F., Wise K. S. 1997; Elongated versions of Vlp surface lipoproteins protect Mycoplasma hyorhinis escape variants from growth-inhibiting host antibodies. Infect Immun 65:1773–1785
    [Google Scholar]
  10. Dandekar T., Huynen M., Regula J. T., Ueberle B., Zimmermann C. U., Andrade M. A., Doerks T., Sanchez-Pulido L., Snel B. other authors 2000; Re-annotating the Mycoplasma pneumoniae genome sequence: adding value, function and reading frames. Nucleic Acids Res 28:3278–3288
    [Google Scholar]
  11. Finn R. D., Mistry J., Schuster-Bockler B., Griffiths-Jones S., Hollich V., Lassmann T., Moxon S., Marshall M., Khanna A. other authors 2006; Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251
    [Google Scholar]
  12. Fraser C. M., Gocayane J. D., White O., Adams M. D., Clayton R. A., Fleischmann R. D., Bult C. J., Kerlavage A. R., Sutton G. & other authors; 1995; The minimal gene complement of Mycoplasma genitalium. Science 270:397–403
    [Google Scholar]
  13. Gavin A. C., Bosche M., Krause R., Grandi P., Marzioch M., Bauer A., Schultz J., Rick J. M., Michon A. M. other authors 2002; Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147
    [Google Scholar]
  14. Göbel U., Speth V., Bredt W. 1981; Filamentous structures in adherent Mycoplasma pneumoniae cells treated with nonionic detergents. J Cell Biol 91:537–543
    [Google Scholar]
  15. Halbedel S., Hames C., Stülke J. 2004; In vivo activity of enzymatic and regulatory components of the phosphoenolpyruvate : sugar phosphotransferase system in Mycoplasma pneumoniae. J Bacteriol 186:7936–7943
    [Google Scholar]
  16. Halbedel S., Busse J., Schmidl S., Stülke J. 2006; Regulatory protein phosphorylation in Mycoplasma pneumoniae: A PP2C-type phosphatase serves to dephosphorylate HPr(Ser-P. J Biol Chem 281:26253–26259
    [Google Scholar]
  17. Hasselbring B. M., Page C. A., Sheppard E. S., Krause D. C. 2006; Transposon mutagenesis identifies genes associated with Mycoplasma pneumoniae gliding motility. J Bacteriol 188:6335–6345
    [Google Scholar]
  18. Hegermann J., Herrmann R., Mayer F. 2002; Cytoskeletal elements in the bacterium Mycoplasma pneumoniae. Naturwissenschaften 89:453–458
    [Google Scholar]
  19. Henderson G. P., Jensen G. J. 2006; Three-dimensional structure of Mycoplasma pneumoniae's attachment organelle and a model for its role in gliding motility. Mol Microbiol 60:376–385
    [Google Scholar]
  20. Himmelreich R. 1997 Gesamtanalyse des Genoms von Mycoplasma pneumoniae Thesis University of Heidelberg;
    [Google Scholar]
  21. Himmelreich R., Hilbert H., Plagens H., Pirkl E., Li B. C., Herrmann R. 1996; Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res 24:4420–4429
    [Google Scholar]
  22. Hirano T. 2005; Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 19:1269–1287
    [Google Scholar]
  23. Hoppert M. 2003 Microscopic Techniques in Biotechnology Weinheim: Wiley-VCH;
  24. Hu P. C., Cole R. M., Huabg Y. S., Graham J. A., Gardner D. E., Collier A. M., Clyde W. A. 1982; Mycoplasma pneumoniae infection: role of a surface protein in the attachment organelle. Science 216:313–315
    [Google Scholar]
  25. Kanehisa M., Goto S., Hattori M., Aoki-Kinoshita K. F., Itoh M., Kawashima S., Katayama T., Araki M., Hirakawa M. 2006; From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34:D354–D357
    [Google Scholar]
  26. Krause D. C., Balish M. F. 2004; Cellular engineering in a minimal microbe: structure and assembly of the terminal organelle of Mycoplasma pneumoniae. Mol Microbiol 51:917–924
    [Google Scholar]
  27. Krause D. C., Leith D. K., Wilson R. M., Baseman J. B. 1982; Identification of Mycoplasma pneumoniae proteins associated with hemadsorption and virulence. Infect Immun 35:809–817
    [Google Scholar]
  28. Meng K. E., Pfister R. M. 1980; Intracellular structures of Mycoplasma pneumoniae revealed after membrane removal. J Bacteriol 144:390–399
    [Google Scholar]
  29. Neyrolles O., Brenner C., Prevost M. C., Fontaine C., Montagnier L., Blanchard A. 1998; Identification of two glycosylated components of Mycoplasma penetrans: a surface-exposed capsular polysaccharide and a glycolipid fraction. Microbiology 144:1247–1255
    [Google Scholar]
  30. Nickel W. 2003; The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem 270:2109–2119
    [Google Scholar]
  31. Proft T., Herrmann R. 1994; Identification and characterization of hitherto unknown Mycoplasma pneumoniae proteins. Mol Microbiol 13:337–348
    [Google Scholar]
  32. Puig O., Caspary F., Rigaut G., Rutz B., Bouveret E., Bragado-Nilsson E., Wilm M., Seraphin B. 2001; The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229
    [Google Scholar]
  33. Regula J. T. 1999 Auf dem Weg zum Proteom von Mycoplasma pneumoniae Thesis University of Heidelberg;
    [Google Scholar]
  34. Regula J. T., Ueberle B., Boguth G., Görg A., Schnölzer M., Herrmann R., Frank R. 2000; Towards a two-dimensional proteome map of Mycoplasma pneumoniae. Electrophoresis 21:3765–3780
    [Google Scholar]
  35. Regula J. T., Boguth G., Görg A., Hegermann J., Mayer F., Frank R., Herrmann R. 2001; Defining the mycoplasma ‘cytoskeleton’: the protein composition of the Triton X-100 insoluble fraction of the bacterium Mycoplasma pneumoniae determined by 2-D gel electrophoresis and mass spectrometry. Microbiology 147:1045–1057
    [Google Scholar]
  36. Rosengarten R., Kirchhoff H., Kerlen G., Seack K. H. 1988; The surface layer of Mycoplasma mobile 163K and its possible relevance to cell cohesion and group motility. J Gen Microbiol 134:275–281
    [Google Scholar]
  37. Salwinski L., Miller C. S., Smith A. J., Pettit F. K., Bowie J. U., Eisenberg D. 2004; The database of interacting proteins: 2004 update. Nucleic Acids Res 32:D449–D451
    [Google Scholar]
  38. Seybert A., Herrmann R., Frangakis A. S. 2006; Structural analysis of Mycoplasma pneumoniae by cryo-electron tomography. J Struct Biol 156:342–345
    [Google Scholar]
  39. Su H.-C., Hutchison C. A. III, Giddings M. C. 2007; Mapping phosphoproteins in Mycoplasma genitalium and Mycoplasma pneumoniae. BMC Microbiol 7:63
    [Google Scholar]
  40. Waites K. B., Talkington D. F. 2004; Mycoplasma pneumoniae and its role as a human pathogen. Clin Microbiol Rev 17:697–728
    [Google Scholar]
  41. Wenzel R., Herrmann R. 1989; Cloning of the complete Mycoplasma pneumoniae genome. Nucleic Acids Res 17:7029–7040
    [Google Scholar]
  42. Wilson M. H., Collier A. M. 1976; Ultrastructural study of Mycoplasma pneumoniae in organ culture. J Bacteriol 125:332–339
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013342-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013342-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error