1887

Abstract

Typical enteropathogenic (EPEC) O55 : H7 is regarded as the closest relative of enterohaemorrhagic (EHEC) O157 : H7. Both serotypes usually express the 1 intimin subclass and trigger actin polymerization by the Tir-TccP pathway. However, atypical O55 : H7 strains capable of triggering actin polymerization via the Tir-Nck pathway have recently been identified. In this study, we investigated the genotypic differences and phylogenetic relationships between typical and atypical O55 : H7 strains. We show that the atypical O55 : H7 strains, which express the θ intimin subclass and lack both and , belong to an lineage distinct from the typical O55 : H7 and from the EPEC O55 : H6, which also uses the Tir-Nck actin polymerization pathway. We conducted genomic comparisons of the chromosomal regions covering the O-antigen gene cluster and its flanking regions between the three O55 lineages by RFLP analysis of PCR products and DNA sequencing analysis of about 65 kb chromosomal regions. This unexpectedly revealed that horizontal transfer of large fragments (≥40 kb) encoding the O55-antigen gene cluster and part of the neighbouring colanic acid gene cluster was involved in the emergence of the three O55 lineages. The data provide new insights into the mechanisms involved in the generation of a wide variety of O-serotypes in Gram-negative bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/013334-0
2008-02-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/2/559.html?itemId=/content/journal/micro/10.1099/mic.0.2007/013334-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Blanco, M., Blanco, J. E., Dahbi, G., Alonso, M. P., Mora, A., Coira, M. A., Madrid, C., Juárez, A., Bernárdez, M. I. & other authors ( 2006; ). Identification of two new intimin types in atypical enteropathogenic Escherichia coli. Int Microbiol 9, 103–110.
    [Google Scholar]
  3. Bokete, T. N., Whittam, T. S., Wilson, R. A., Clausen, C. R., O'Callahan, C. M., Moseley, S. L., Fritsche, T. R. & Tarr, P. I. ( 1997; ). Genetic and phenotypic analysis of Escherichia coli with enteropathogenic characteristics isolated from Seattle children. J Infect Dis 175, 1382–1389.[CrossRef]
    [Google Scholar]
  4. Cebula, T. A., Payne, W. L. & Feng, P. ( 1995; ). Simultaneous identification of strains of Escherichia coli serotype O157 : H7 and their Shiga-like toxin type by mismatch amplification mutation assay-multiplex PCR. J Clin Microbiol 33, 248–250.
    [Google Scholar]
  5. Cunneen, M. M. & Reeves, P. R. ( 2007; ). The Yersinia kristensenii O11 O-antigen gene cluster was acquired by lateral gene transfer and incorporated at a novel chromosomal locus. Mol Biol Evol 24, 1355–1365.[CrossRef]
    [Google Scholar]
  6. Curd, H., Liu, D. & Reeves, P. ( 1998; ). Relationships among the O-antigen gene clusters of Salmonella enterica groups B, D1, D2, and D3. J Bacteriol 180, 1002–1007.
    [Google Scholar]
  7. de Hoon, M. J., Imoto, S., Nolan, J. & Miyano, S. ( 2004; ). Open source clustering software. Bioinformatics 20, 1453–1454.[CrossRef]
    [Google Scholar]
  8. DeVinney, R., Stein, M., Reinscheid, D., Abe, A., Ruschkowski, S. & Finlay, B. ( 1999; ). Enterohemorrhagic Escherichia coli O157 : H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect Immun 67, 2389–2398.
    [Google Scholar]
  9. Dixon, D. A. & Kowalczykowski, S. C. ( 1993; ). The recombination hotspot chi is a regulatory sequence that acts by attenuating the nuclease activity of the E. coli RecBCD enzyme. Cell 73, 87–96.[CrossRef]
    [Google Scholar]
  10. Donnenberg, M. S., Kaper, J. B. & Finlay, B. B. ( 1997; ). Interactions between enteropathogenic Escherichia coli and host epithelial cells. Trends Microbiol 5, 109–114.[CrossRef]
    [Google Scholar]
  11. Elliott, S. J., Wainwright, L. A., McDaniel, T. K., Jarvis, K. G., Deng, Y. Y., Lai, L. C., McNamara, B. P., Donnenberg, M. S. & Kaper, J. B. ( 1998; ). The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol 28, 1–4.
    [Google Scholar]
  12. Fegan, N., Barlow, R. & Gobius, K. ( 2006; ). Escherichia coli O157 somatic antigen is present in an isolate of E. fergusonii. Curr Microbiol 52, 482–486.[CrossRef]
    [Google Scholar]
  13. Fetherston, J. D., Lillard, J. W., Jr & Perry, R. D. ( 1995; ). Analysis of the pesticin receptor from Yersinia pestis: role in iron-deficient growth and possible regulation by its siderophore. J Bacteriol 177, 1824–1833.
    [Google Scholar]
  14. Franke, J., Franke, S., Schmidt, H., Schwarzkopf, A., Wieler, L., Baljer, G., Beutin, L. & Karch, H. ( 1994; ). Nucleotide sequence analysis of enteropathogenic Escherichia coli (EPEC) adherence factor probe and development of PCR for rapid detection of EPEC harboring virulence plasmids. J Clin Microbiol 32, 2460–2463.
    [Google Scholar]
  15. Garmendia, J., Phillips, A. D., Carlier, M. F., Chong, Y., Schüller, S., Marches, O., Dahan, S., Oswald, E., Shaw, R. K. & other authors ( 2004; ). TccP is an enterohaemorrhagic Escherichia coli O157 : H7 type III effector protein that couples Tir to the actin-cytoskeleton. Cell Microbiol 6, 1167–1183.[CrossRef]
    [Google Scholar]
  16. Garmendia, J., Ren, Z., Tennant, S., Midolli Viera, M. A., Chong, Y., Whale, A., Azzopardi, K., Dahan, S., Sircili, M. P. & other authors ( 2005; ). Distribution of tccP in clinical enterohemorrhagic and enteropathogenic Escherichia coli isolates. J Clin Microbiol 43, 5715–5720.[CrossRef]
    [Google Scholar]
  17. Girardeau, J. P., Dalmasso, A., Bertin, Y., Ducrot, C., Bord, S., Livrelli, V., Vernozy-Rozand, C. & Martin, C. ( 2005; ). Association of virulence genotype with phylogenetic background in comparison to different seropathotypes of Shiga toxin-producing Escherichia coli isolates. J Clin Microbiol 43, 6098–6107.[CrossRef]
    [Google Scholar]
  18. Gruenheid, S., DeVinney, R., Bladt, F., Goosney, D., Gelkop, S., Gish, G., Pawson, T. & Finlay, B. ( 2001; ). Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nat Cell Biol 3, 856–859.[CrossRef]
    [Google Scholar]
  19. Gunzburg, S. T., Tornieporth, N. G. & Riley, L. W. ( 1995; ). Identification of enteropathogenic Escherichia coli by PCR-based detection of the bundle-forming pilus gene. J Clin Microbiol 33, 1375–1377.
    [Google Scholar]
  20. Guo, H., Yi, W., Shao, J., Lu, Y., Zhang, W., Song, J. & Wang, P. ( 2005; ). Molecular analysis of the O-antigen gene cluster of Escherichia coli O86 : B7 and characterization of the chain length determinant gene (wzz). Appl Environ Microbiol 71, 7995–8001.[CrossRef]
    [Google Scholar]
  21. Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K., Yokoyama, K., Han, C. G., Ohtsubo, E., Nakayama, K. & other authors ( 2001; ). Complete genome sequence of enterohemorrhagic Escherichia coli O157 : H7 and genomic comparison with a laboratory strain K-12. DNA Res 8, 11–22.[CrossRef]
    [Google Scholar]
  22. Hyma, K. E., Lacher, D. W., Nelson, A. M., Bumbaugh, A. C., Janda, J. M., Strockbine, N. A., Young, V. B. & Whittam, T. S. ( 2005; ). Evolutionary genetics of a new pathogenic Escherichia species: Escherichia albertii and related Shigella boydii strains. J Bacteriol 187, 619–628.[CrossRef]
    [Google Scholar]
  23. Iguchi, A., Iyoda, S., Watanabe, H. & Osawa, R. ( 2007; ). O side chain deficiency enhances sensitivity of Escherichia coli to Shiga toxin 2-converting bacteriophages. Curr Microbiol 54, 14–19.[CrossRef]
    [Google Scholar]
  24. Kaper, J. B. ( 1998; ). Enterohemorrhagic Escherichia coli. Curr Opin Microbiol 1, 103–108.[CrossRef]
    [Google Scholar]
  25. Karch, H., Bohm, H., Schmidt, H., Gunzer, F., Aleksic, S. & Heesemann, J. ( 1993; ). Clonal structure and pathogenicity of Shiga-like toxin-producing, sorbitol-fermenting Escherichia coli O157 : H. J Clin Microbiol 31, 1200–1205.
    [Google Scholar]
  26. Kenny, B. ( 1999; ). Phosphorylation of tyrosine 474 of the enteropathogenic Escherichia coli (EPEC) Tir receptor molecule is essential for actin nucleating activity and is preceded by additional host modifications. Mol Microbiol 31, 1229–1241.[CrossRef]
    [Google Scholar]
  27. Kim, C. C., Joyce, E. A., Chan, K. & Falkow, S. ( 2002; ). Improved analytical methods for microarray-based genome-composition analysis. Genome Biol 3, RESEARCH0065
    [Google Scholar]
  28. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  29. Lacher, D. W., Steinsland, H. & Whittam, T. S. ( 2006; ). Allelic subtyping of the intimin locus (eae) of pathogenic Escherichia coli by fluorescent RFLP. FEMS Microbiol Lett 261, 80–87.[CrossRef]
    [Google Scholar]
  30. Lawrence, J. G. & Ochman, H. ( 1998; ). Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A 95, 9413–9417.[CrossRef]
    [Google Scholar]
  31. McGraw, E. A., Li, J., Selander, R. K. & Whittam, T. S. ( 1999; ). Molecular evolution and mosaic structure of alpha, beta, and gamma intimins of pathogenic Escherichia coli. Mol Biol Evol 16, 12–22.[CrossRef]
    [Google Scholar]
  32. Mellies, J. L., Elliott, S. J., Sperandio, V., Donnenberg, M. S. & Kaper, J. B. ( 1999; ). The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol Microbiol 33, 296–306.[CrossRef]
    [Google Scholar]
  33. Mooi, F. R. & Bik, E. M. ( 1997; ). The evolution of epidemic Vibrio cholerae strains. Trends Microbiol 5, 161–165.[CrossRef]
    [Google Scholar]
  34. Murray, G. L., Attridge, S. R. & Morona, R. ( 2006; ). Altering the length of the lipopolysaccharide O antigen has an impact on the interaction of Salmonella enterica serovar Typhimurium with macrophages and complement. J Bacteriol 188, 2735–2739.[CrossRef]
    [Google Scholar]
  35. Nataro, J. P. & Kaper, J. B. ( 1998; ). Diarrheagenic Escherichia coli. Clin Microbiol Rev 11, 142–201.
    [Google Scholar]
  36. Nataro, J. P., Yikang, D., Yingkang, D. & Walker, K. ( 1994; ). AggR, a transcriptional activator of aggregative adherence fimbria I expression in enteroaggregative Escherichia coli. J Bacteriol 176, 4691–4699.
    [Google Scholar]
  37. O'Connell, C., Pattee, P. A. & Foster, T. J. ( 1993; ). Sequence and mapping of the aroA gene of Staphylococcus aureus 8325-4. J Gen Microbiol 139, 1449–1460.[CrossRef]
    [Google Scholar]
  38. Ogura, Y., Kurokawa, K., Ooka, T., Tahiro, K., Tobe, T., Ohnishi, M., Nakayama, K., Morimoto, T., Terajima, J. & other authors ( 2006; ). Complexity of the genomic diversity in enterohemorrhagic Escherichia coli O157 revealed by the combinational use of the O157 Sakai OligoDNA microarray and the whole genome PCR scanning. DNA Res 13, 3–14.[CrossRef]
    [Google Scholar]
  39. Ogura, Y., Ooka, T., Whale, A., Garmendia, J., Beutin, L., Tennant, S., Krause, G., Morabito, S., Chinen, I. & other authors ( 2007; ). TccP2 of O157 : H7 and non-O157 enterohemorrhagic Escherichia coli (EHEC): challenging the dogma of EHEC-induced actin polymerization. Infect Immun 75, 604–612.[CrossRef]
    [Google Scholar]
  40. Ohnishi, M., Terajima, J., Kurokawa, K., Nakayama, K., Murata, T., Tamura, K., Ogura, Y., Watanabe, H. & Hayashi, T. ( 2002; ). Genomic diversity of enterohemorrhagic Escherichia coli O157 revealed by whole genome PCR scanning. Proc Natl Acad Sci U S A 99, 17043–17048.[CrossRef]
    [Google Scholar]
  41. Ooka, T., Vieira, M., Ogura, Y., Beutin, L., La Ragione, R., van Diemen, P. M., Stevens, M. P., Aktan, I., Cawthraw, S. & other authors ( 2007; ). Characterization of tccP2 carried by atypical enteropathogenic Escherichia coli. FEMS Microbiol Lett 271, 126–135.[CrossRef]
    [Google Scholar]
  42. Pupo, G. M., Karaolis, D. K., Lan, R. & Reeves, P. R. ( 1997; ). Evolutionary relationships among pathogenic and nonpathogenic Escherichia coli strains inferred from multilocus enzyme electrophoresis and mdh sequence studies. Infect Immun 65, 2685–2692.
    [Google Scholar]
  43. Ramachandran, V., Brett, K., Hornitzky, M., Dowton, M., Bettelheim, K., Walker, M. & Djordjevic, S. ( 2003; ). Distribution of intimin subtypes among Escherichia coli isolates from ruminant and human sources. J Clin Microbiol 41, 5022–5032.[CrossRef]
    [Google Scholar]
  44. Reeves, P. R., Hobbs, M., Valvano, M. A., Skurnik, M., Whitfield, C., Coplin, D., Kido, N., Klena, J., Maskell, D. & other authors ( 1996; ). Bacterial polysaccharide synthesis and gene nomenclature. Trends Microbiol 4, 495–503.[CrossRef]
    [Google Scholar]
  45. Reid, S. D., Herbelin, C. J., Bumbaugh, A. C., Selander, R. K. & Whittam, T. S. ( 2000; ). Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406, 64–67.[CrossRef]
    [Google Scholar]
  46. Saldanha, A. J. ( 2004; ). Java TreeView – extensible visualization of microarray data. Bioinformatics 20, 3246–3248.[CrossRef]
    [Google Scholar]
  47. Scheutz, F., Cheasty, T., Woodward, D. & Smith, H. ( 2004; ). Designation of O174 and O175 to temporary O groups OX3 and OX7, and six new E. coli O groups that include Verocytotoxin-producing E. coli (VTEC): O176, O177, O178, O179, O180 and O181. APMIS 112, 569–584.[CrossRef]
    [Google Scholar]
  48. Schmidt, H., Russmann, H. & Karch, H. ( 1993; ). Virulence determinants in nontoxinogenic Escherichia coli O157 strains that cause infantile diarrhea. Infect Immun 61, 4894–4898.
    [Google Scholar]
  49. Schubert, S., Rakin, A., Karch, H., Carniel, E. & Heesemann, J. ( 1998; ). Prevalence of the “high-pathogenicity island” of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect Immun 66, 480–485.
    [Google Scholar]
  50. Stroeher, U. H. & Manning, P. A. ( 1997; ). Vibrio cholerae serotype O139: swapping genes for surface polysaccharide biosynthesis. Trends Microbiol 5, 178–180.[CrossRef]
    [Google Scholar]
  51. Stroeher, U. H., Jedani, K. E. & Manning, P. A. ( 1998; ). Genetic organization of the regions associated with surface polysaccharide synthesis in Vibrio cholerae O1, O139 and Vibrio anguillarum O1 and O2: a review. Gene 223, 269–282.[CrossRef]
    [Google Scholar]
  52. Sugiyama, T., Kido, N., Kato, Y., Koide, N., Yoshida, T. & Yokochi, T. ( 1998; ). Generation of Escherichia coli O9a serotype, a subtype of E. coli O9, by transfer of the wb* gene cluster of Klebsiella O3 into E. coli via recombination. J Bacteriol 180, 2775–2778.
    [Google Scholar]
  53. Tarr, C. L. & Whittam, T. S. ( 2002; ). Molecular evolution of the intimin gene in O111 clones of pathogenic Escherichia coli. J Bacteriol 184, 479–487.[CrossRef]
    [Google Scholar]
  54. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  55. Trabulsi, L. R., Keller, R. & Tardelli Gomes, T. A. ( 2002; ). Typical and atypical enteropathogenic Escherichia coli. Emerg Infect Dis 8, 508–513.[CrossRef]
    [Google Scholar]
  56. Wang, L., Rothemund, D., Curd, H. & Reeves, P. ( 2000; ). Sequence diversity of the Escherichia coli H7 fliC genes: implication for a DNA-based typing scheme for E. coli O157 : H7. J Clin Microbiol 38, 1786–1790.
    [Google Scholar]
  57. Wang, L., Huskic, S., Cisterne, A., Rothemund, D. & Reeves, P. ( 2002; ). The O-antigen gene cluster of Escherichia coli O55 : H7 and identification of a new UDP-GlcNAc C4 epimerase gene. J Bacteriol 184, 2620–2625.[CrossRef]
    [Google Scholar]
  58. West, N. P., Sansonetti, P., Mounier, J., Exley, R. M., Parsot, C., Guadagnini, S., Prévost, M. C., Prochnicka-Chalufour, A., Delepierre, M. & other authors ( 2005; ). Optimization of virulence functions through glucosylation of Shigella LPS. Science 307, 1313–1317.[CrossRef]
    [Google Scholar]
  59. Whittam, T. S., Wolfe, M. L., Wachsmuth, I. K., Orskov, F., Orskov, I. & Wilson, R. A. ( 1993; ). Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect Immun 61, 1619–1629.
    [Google Scholar]
  60. Wick, L. M., Qi, W., Lacher, D. W. & Whittam, T. S. ( 2005; ). Evolution of genomic content in the stepwise emergence of Escherichia coli O157 : H7. J Bacteriol 187, 1783–1791.[CrossRef]
    [Google Scholar]
  61. Xiang, S. H., Hobbs, M. & Reeves, P. R. ( 1994; ). Molecular analysis of the rfb gene cluster of a group D2 Salmonella enterica strain: evidence for its origin from an insertion sequence-mediated recombination event between group E and D1 strains. J Bacteriol 176, 4357–4365.
    [Google Scholar]
  62. Yamamoto, T. & Nakazawa, M. ( 1997; ). Detection and sequences of the enteroaggregative Escherichia coli heat-stable enterotoxin 1 gene in enterotoxigenic E. coli strains isolated from piglets and calves with diarrhea. J Clin Microbiol 35, 223–227.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/013334-0
Loading
/content/journal/micro/10.1099/mic.0.2007/013334-0
Loading

Data & Media loading...

Supplements

Gene contents of eight O55 strains based on CGH data of singleton genes. The colours indicate the status of the ORFs, as follows: yellow, presence; black, absence; red, uncertain. Prophage, phage-like and plasmid regions in the O157 Sakai genome are indicated by blue bars at the top of the figures. The scales at the bottom of the figures indicate the Ecs serial number allocated for ORFs in the O157 Sakai genome. [ PDF] (151 kb) Summary of comaparive genomic hybridization analyses of O55 strains using an O157 Sakai oligo DNA microarray [ PDF] (60 kb)

PDF

Gene contents of eight O55 strains based on CGH data of singleton genes. The colours indicate the status of the ORFs, as follows: yellow, presence; black, absence; red, uncertain. Prophage, phage-like and plasmid regions in the O157 Sakai genome are indicated by blue bars at the top of the figures. The scales at the bottom of the figures indicate the Ecs serial number allocated for ORFs in the O157 Sakai genome. [ PDF] (151 kb) Summary of comaparive genomic hybridization analyses of O55 strains using an O157 Sakai oligo DNA microarray [ PDF] (60 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error